4.4.3 Аср соотношения «топливо-воздух»
Автоматическое регулирование соотношения расходов топлива и воздуха, подаваемых в печь, должно обеспечивать требуемые условия сжигания топлива. В общем случае условия сжигания топлива должны обеспечить требуемую атмосферу в печи, экономичность сжигания, а также наилучшие условия теплообмена факела с металлом и кладкой.
Численно соотношение «топливо–воздух» характеризуется коэффициентом расхода воздуха , определяемого выражением
= Fв / (Vов Fт), (4.1)
где Fв – действительный расход воздуха; Vов – теоретический расход воздуха, необходимый для полного сжигания единицы топлива; Fт – расход топлива.
При построении АСР соотношения «топливо–воздух» предполагается, что величины и Vо известны. Тогда из формулы (4.1) имеем следующее соотношение между расходом воздуха и топлива
Fв / Fт = ( Vов). (4.2)
При регулировании соотношения «топливо–воздух» в подавляющем большинстве случаев ведущим потоком является газ, расход которого определяется регулятором температуры, ведомым потоком – воздух. В некоторых случаях применяется обратная схема, в которой ведущий поток – воздух, а ведомый – топливо. В названии АСР после слова «соотношение» указывается вначале ведущий, а затем ведомый потоки.
Печи по каналу соотношение «топливо–воздух» являются малоинерционными объектами. Количественные значения параметров передаточной функции определяются типом печи и режимом работы. Значения параметров передаточной функции приведены в табл. 4.4.
На рис. 4.4 приведена функциональная схема типовой автоматической системы регулирования соотношения «топливо–воздух».
Расход топлива (газа) и воздуха измеряются при помощи сужающих устройств 1а и 2а, перепады давлений с которых передаются на дифференциальные манометры–расходомеры 1б и 2б. С электрических выходов датчиков дифманометров сигналы, пропорциональные перепадам давлений, подаются на блоки извлечения квадратного корня 1в и 2в, на выходе которых получают электрические сигналы, пропорциональные расходам газа и воздуха. которые фиксируются вторичными показывающими и регистрирующими приборами 1г и 2г.
Таблица 4.4 – Параметры передаточной функции объекта регулирования
по каналу соотношение «топливо–воздух»
Параметр | Размерность | Величина |
Коэффициент передачи, К | тыс. м3 / % хода РО | 0,02…0,25 |
Постоянная времени, Т | с | 0,5…0,8 |
Время чистого запаздывания, | с | 0,2…0,3 |
Рис. 4.4. Функциональная схема типовой автоматической системы
регулирования соотношения «топливо–воздух»
Расход топлива (газа) и воздуха измеряются при помощи сужающих устройств 1а и 2а, перепады давлений с которых передаются на дифференциальные манометры–расходомеры 1б и 2б. С электрических выходов датчиков дифманометров сигналы, пропорциональные перепадам давлений, подаются на блоки извлечения квадратного корня 1в и 2в, на выходе которых получают электрические сигналы, пропорциональные расходам газа и воздуха. которые фиксируются вторичными показывающими и регистрирующими приборами 1г и 2г.
Сигнал, пропорциональный текущему расходу топлива, поступает на первый вход блока умножения 2е, на второй вход которого подается сигнал с выхода задатчика 2ж, пропорциональный заданному значению коэффициента расхода воздуха . Таким образом, на выходе блока умножения 2е, согласно выражению (4.2), обеспечивается получение сигнала, пропорционального заданному расходу воздуха
Fов = Vов Fт . (4.3)
Этот сигнал с выхода блока умножения 2е поступает на первый вход регулятора соотношения 2д, на второй вход которого подается сигнал с функционального блока 2в, пропорциональный текущему расходу воздуха, при его отклонении от заданного значения. Т.е. от заданного соотношения расходов газа и воздуха. Регулятор 2д через бесконтактный реверсивный пускатель 2и, исполнительный механизм 2к и регулирующий орган 2л осуществляет изменение расхода воздуха до тех пор, пока не будет достигнуто заданное соотношение «топливо–воздух».
В случае выхода из строя регулятора этого соотношения с помощью блока ручного управления 2з осуществляется перевод системы с автоматического режима работы на ручной и дистанционное ручное управление исполнительным механизмом 2к. Для контроля положения его вала и, следовательно, положения регулирующего органа в систему включены дистанционный указатель положения 2м, работающий от специального датчика, расположенного в исполнительном механизме. Он помогает контролировать работу и наладку АСР соотношения «топливо–воздух», а также позволяет ориентироваться при ручном дистанционном управлении исполнительным механизмом.
- М инистерство образования и науки Украины Национальная металлургическая академия Украины
- Днепропетровск – 2009 содержание
- Введение
- 1 АвтоматизациЯ производственных процессов
- 1.1 Процесс управления
- Необходимость автоматизации современного производства
- Особенности металлургических объектов автоматизации
- Предпосылки успешной автоматизации:
- Экономическая оценка эффективности автоматизации
- 1.6 Основные требования к автоматизации
- 2 Технологический объект и системы управления
- 2.1 Описание технологического объекта управления (тоу)
- 2.2 Математическая модель тоу и основная задача автоматизации
- 2.3 Классификация систем автоматического управления
- I. По целям управления и виду алгоритмов
- II. По типу систем автоматического управления
- По виду математического описания
- IV. По виду сигналов
- V. По характеру задающего воздействия
- VI. По методу управления
- VII. Статические и астатические системы управления
- VIII. Уровни асу
- 3 Переходные процессы и оценка их качества
- 3.1 Статическое и динамическое состояние системы
- 3.2 Виды переходных процессов
- 3.3 Типовые воздействия на объект
- 3.4 Оценка качества процесса управления
- 4 ФункцИональнЫе схемЫ автоматизацИи
- 4.1 Назначение и виды функциональных схем автоматизации
- 4.2 Обозначения элементов автоматики
- 4.3 Принципы составления функциональных схем автоматизации
- 4.4 Структурные схемы контроля и управления
- 4.4.1 Аср температуры в печи
- 4.4.2 Аср давления в рабочем пространстве печи
- 4.4.3 Аср соотношения «топливо-воздух»
- 4.4.4 Автоматическая защита и сигнализация
- 5 Принципы и режимы управления
- 5.1 Принцип разомкнутого управления (по заданию)
- 5.2 Управление по отклонению (принцип обратной связи)
- 5.3 Управление по возмущению (принцип компенсации)
- 5.4 Пример реализации принципов управления
- 5.5 Оптимальное и адаптивное управление
- 5.6 Режимы функционирования систем автоматизации
- 6 Типовые динамические звенья
- 6.1 Свойства типовых динамических звеньев
- 6.2 Понятие передаточной функции
- 6.3 Динамические звенья первого порядка
- 6.3.1 Пропорциональное звено
- 6.3.2 Апериодическое (инерционное) звено первого порядка
- 6.3.3 Идеальное интегрирующее звено
- 6.3.5 Идеальное дифференцирующее звено
- 6.3.7 Звено чистого запаздывания
- 6.4 Класификация динамических звеньев второго порядка
- 6.5 Передаточные функции соединений динамических звеньев
- 6.5.3 Встречно-параллельное соединение звеньев
- 7 Частотные характеристики систем управления
- 7.1 Амплитудная и фазовая частотные характеристики
- 7.2 Совмещенная частотная характеристика
- 7.3 Частотная передаточная функция
- 7.4 Частотные функции соединений звеньев
- 7.5 Логарифмические частотные характеристики
- 8 Устойчивость систем автоматического управления
- 8.1 Понятие равновесия и устойчивости
- 8.2 Математические критерии устойчивости
- 8.3 Области устойчивости сау в фазовом пространстве
- 9 Технические средства автоматизации
- 9.1 Состав и функции технических средств
- 9.2 Общие требования к тса
- 9.3 Требования к технологическим датчикам
- 9.4 Исполнительные устройства и требования к ним
- 9.5 Регулирующие органы
- 9.6 Разработка технических средств автоматизации
- 10 Автоматические регулирующие устройства
- 10.1 Типовые оптимальные переходные процессы регулирования
- 10.2 Законы регулирования и автоматические регуляторы
- 10.3 Синтез законов регулирования
- 10.4 Оптимальное управление
- Микропроцессорная техника
- 11.1 Синтез логических управляющих устройств
- 11.2 Микропроцессорные системы
- 11.3 Структура и основные функции микроконтроллеров
- 12 Управляющие вычислительные комплексы
- 12.1 Принципы построения управляющих вычислительных комплексов
- 12.2 Технические и программные компоненты увк
- Основные технические компоненты обеспечивают процесс измерения и обработку полученной информации. К ним относятся:
- Общее прикладное по увк представляет собой организованную совокупность программных модулей, реализующих:
- 12.3 Требования к увк
- Рекомендуемая литература