7.5 Логарифмические частотные характеристики
При исследовании систем управления частотные характеристики удобно строить в логарифмических координатах по таким причинам: 1) в большинстве случаев АЧХ звеньев в логарифмических координатах можно представить отрезками прямых линий; 2) АЧХ цепочки звеньев графически суммируются.
АЧХ в логарифмических координатах строится в виде зависимости lg A от lg ω, называемой логарифмической амплитудно–частотной характеристикой (ЛАЧХ), а фазовая – в виде зависимости φ от lg ω, наз. логарифмической фазочастотной характеристикой (ЛФЧХ).
При этом за единицу масштаба частоты принимается декада – частотный интервал, соответствующий изменению частоты в 10 раз.
При построении ЛАЧХ по оси ординат откладывают выходную величину L(ω), измеряемую в децибелах (дБ). Бел – единица десятичного логарифма коэффициента усиления мощности сигнала. Один бел соответствует усилению мощности в 10 раз, 2 бела – в 100 раз, 3 бела – в 1000 раз и т.д.
Поскольку мощность сигнала пропорциональна А2, то ее усиление в белах в логарифмических координатах равно lg A2 = 2 lg A (в децибелах – 20 lg A.). Таким образом – L(ω) = 20 lg A(ω).
Соотношение A и L приведено в следующей таблице
А | 0,01 | 0,1 | 0,5 | 1,0 | 1,12 | 1,41 | 2,0 | 3,6 | 10 | 100 |
L, дБ | – 40 | – 20 | – 6 | 0 | 1 | 3 | 6 | 10 | 20 | 40 |
При построении ЛФЧХ фаза откладывается по оси ординат в радианах или угловых градусах в обычном масштабе, т.к. фазовый сдвиг цепочки звеньев равен сумме фазовых сдвигов на отдельных ее звеньях. При совместном анализе ЛАЧХ и ЛФЧХ на оси абсцисс применяют логарифмический масштаб частоты в декадах или в октавах (одна октава соответствует изменению частоты в два раза).
Отметим, что при использовании логарифмического масштаба точка, соответствующая ω = 0, находится в минус ∞, а нулю на оси абсцисс соответствует точка ω = 1 рад/с.
- М инистерство образования и науки Украины Национальная металлургическая академия Украины
- Днепропетровск – 2009 содержание
- Введение
- 1 АвтоматизациЯ производственных процессов
- 1.1 Процесс управления
- Необходимость автоматизации современного производства
- Особенности металлургических объектов автоматизации
- Предпосылки успешной автоматизации:
- Экономическая оценка эффективности автоматизации
- 1.6 Основные требования к автоматизации
- 2 Технологический объект и системы управления
- 2.1 Описание технологического объекта управления (тоу)
- 2.2 Математическая модель тоу и основная задача автоматизации
- 2.3 Классификация систем автоматического управления
- I. По целям управления и виду алгоритмов
- II. По типу систем автоматического управления
- По виду математического описания
- IV. По виду сигналов
- V. По характеру задающего воздействия
- VI. По методу управления
- VII. Статические и астатические системы управления
- VIII. Уровни асу
- 3 Переходные процессы и оценка их качества
- 3.1 Статическое и динамическое состояние системы
- 3.2 Виды переходных процессов
- 3.3 Типовые воздействия на объект
- 3.4 Оценка качества процесса управления
- 4 ФункцИональнЫе схемЫ автоматизацИи
- 4.1 Назначение и виды функциональных схем автоматизации
- 4.2 Обозначения элементов автоматики
- 4.3 Принципы составления функциональных схем автоматизации
- 4.4 Структурные схемы контроля и управления
- 4.4.1 Аср температуры в печи
- 4.4.2 Аср давления в рабочем пространстве печи
- 4.4.3 Аср соотношения «топливо-воздух»
- 4.4.4 Автоматическая защита и сигнализация
- 5 Принципы и режимы управления
- 5.1 Принцип разомкнутого управления (по заданию)
- 5.2 Управление по отклонению (принцип обратной связи)
- 5.3 Управление по возмущению (принцип компенсации)
- 5.4 Пример реализации принципов управления
- 5.5 Оптимальное и адаптивное управление
- 5.6 Режимы функционирования систем автоматизации
- 6 Типовые динамические звенья
- 6.1 Свойства типовых динамических звеньев
- 6.2 Понятие передаточной функции
- 6.3 Динамические звенья первого порядка
- 6.3.1 Пропорциональное звено
- 6.3.2 Апериодическое (инерционное) звено первого порядка
- 6.3.3 Идеальное интегрирующее звено
- 6.3.5 Идеальное дифференцирующее звено
- 6.3.7 Звено чистого запаздывания
- 6.4 Класификация динамических звеньев второго порядка
- 6.5 Передаточные функции соединений динамических звеньев
- 6.5.3 Встречно-параллельное соединение звеньев
- 7 Частотные характеристики систем управления
- 7.1 Амплитудная и фазовая частотные характеристики
- 7.2 Совмещенная частотная характеристика
- 7.3 Частотная передаточная функция
- 7.4 Частотные функции соединений звеньев
- 7.5 Логарифмические частотные характеристики
- 8 Устойчивость систем автоматического управления
- 8.1 Понятие равновесия и устойчивости
- 8.2 Математические критерии устойчивости
- 8.3 Области устойчивости сау в фазовом пространстве
- 9 Технические средства автоматизации
- 9.1 Состав и функции технических средств
- 9.2 Общие требования к тса
- 9.3 Требования к технологическим датчикам
- 9.4 Исполнительные устройства и требования к ним
- 9.5 Регулирующие органы
- 9.6 Разработка технических средств автоматизации
- 10 Автоматические регулирующие устройства
- 10.1 Типовые оптимальные переходные процессы регулирования
- 10.2 Законы регулирования и автоматические регуляторы
- 10.3 Синтез законов регулирования
- 10.4 Оптимальное управление
- Микропроцессорная техника
- 11.1 Синтез логических управляющих устройств
- 11.2 Микропроцессорные системы
- 11.3 Структура и основные функции микроконтроллеров
- 12 Управляющие вычислительные комплексы
- 12.1 Принципы построения управляющих вычислительных комплексов
- 12.2 Технические и программные компоненты увк
- Основные технические компоненты обеспечивают процесс измерения и обработку полученной информации. К ним относятся:
- Общее прикладное по увк представляет собой организованную совокупность программных модулей, реализующих:
- 12.3 Требования к увк
- Рекомендуемая литература