8.1 Понятие равновесия и устойчивости
Одним из основных условий работоспособности САУ является ее устойчивость, т.е. способность системы возвращаться в исходное состояние после снятия или прекращения изменения воздействия, выведшего ее из этого состояния. Понятие устойчивости неразрывно связано с понятием равновесия.
Равновесным состоянием тела (или системы) называется такое состояние, в котором сумма всех внешних воздействий равна нулю. Равновесное состояние может быть устойчивым, неустойчивым и нейтральным.
Классической иллюстрацией этого положения (рис. 8.1) является поведение шарика, помещенного: на дно лунки (а), на вершину холма (б) и на горизонтальную плоскость (в). В каждом из этих случаев сумма внешних сил, действующих на шарик, равна нулю и, следовательно, шарик находится в состоянии равновесия.
Однако, если в первом случае после небольшого отклонения шарик через некоторое время вновь возвращается в исходное положение равновесия, то во втором он будет продолжать отклоняться от него, а в
Рис. 8.1. Механическая интерпретация понятия устойчивости
третьем – просто перейдет в новое положение равновесия, зависящее от величины отклонения.
Кроме того, такая система может быть устойчива при воздействиях, не выходящих за определенные пределы – «в малом», и неустойчива при больших воздействиях – «в целом» (см. рис. 8.1, г).
Рассмотрим с этой точки зрения системы автоматического управления.
Каждая САУ характеризуется неким равновесным состоянием, которое нарушается при внешних воздействиях. Это могут быть сигналы управления, помехи и т.п. Под устойчивостью САУ подразумевается свойство системы возвращаться к первоначальному состоянию после прекращения воздействия, выведшего систему из этого состояния.
Обозначим у(t0) – значение выходной величины в исходном равновесном состоянии системы (в момент времени t = t0), y(t) – текущее значение выходной величины после нанесения возмущения f(t).
САУ будет являться устойчивой, если при t величина y(t) стремится к своему начальному значению y(t0) в случае f(t) = сonst или после снятия воздействия f(t)=0.
Если при этом амплитуда отклонения выходной величины объекта управления не превышает допустимых по технологии значений, а наличие ее колебаний не ухудшает работу агрегата – такую систему можно эксплуатировать.
Неустойчивая система не возвращается к состоянию равновесия по окончании или стабилизации воздействия, а непрерывно удаляется от него или совершает недопустимо большие колебания.
Заметим, что нейтральные САУ, в которых по окончании воздействия устанавливается новое состояние равновесия, отличное от первоначального и зависящее от произведенного воздействия, являются неустойчивыми.
Реальные системы обычно работают в условиях непрерывно изменяющихся воздействий, при этом установившиеся режимы вообще отсутствуют. В таких случаях применяют обобщенное определение: «Система динамически устойчива, если ее выходная величина остается в пределах допустимых отклонений в условиях действия ограниченных возмущений».
В связи с этим можно сказать, что системы автоматического управления устойчивы, если происходящие в них переходные процессы сходятся. Выясним, какими особенностями математического описания систем определяется эта сходимость.
- М инистерство образования и науки Украины Национальная металлургическая академия Украины
- Днепропетровск – 2009 содержание
- Введение
- 1 АвтоматизациЯ производственных процессов
- 1.1 Процесс управления
- Необходимость автоматизации современного производства
- Особенности металлургических объектов автоматизации
- Предпосылки успешной автоматизации:
- Экономическая оценка эффективности автоматизации
- 1.6 Основные требования к автоматизации
- 2 Технологический объект и системы управления
- 2.1 Описание технологического объекта управления (тоу)
- 2.2 Математическая модель тоу и основная задача автоматизации
- 2.3 Классификация систем автоматического управления
- I. По целям управления и виду алгоритмов
- II. По типу систем автоматического управления
- По виду математического описания
- IV. По виду сигналов
- V. По характеру задающего воздействия
- VI. По методу управления
- VII. Статические и астатические системы управления
- VIII. Уровни асу
- 3 Переходные процессы и оценка их качества
- 3.1 Статическое и динамическое состояние системы
- 3.2 Виды переходных процессов
- 3.3 Типовые воздействия на объект
- 3.4 Оценка качества процесса управления
- 4 ФункцИональнЫе схемЫ автоматизацИи
- 4.1 Назначение и виды функциональных схем автоматизации
- 4.2 Обозначения элементов автоматики
- 4.3 Принципы составления функциональных схем автоматизации
- 4.4 Структурные схемы контроля и управления
- 4.4.1 Аср температуры в печи
- 4.4.2 Аср давления в рабочем пространстве печи
- 4.4.3 Аср соотношения «топливо-воздух»
- 4.4.4 Автоматическая защита и сигнализация
- 5 Принципы и режимы управления
- 5.1 Принцип разомкнутого управления (по заданию)
- 5.2 Управление по отклонению (принцип обратной связи)
- 5.3 Управление по возмущению (принцип компенсации)
- 5.4 Пример реализации принципов управления
- 5.5 Оптимальное и адаптивное управление
- 5.6 Режимы функционирования систем автоматизации
- 6 Типовые динамические звенья
- 6.1 Свойства типовых динамических звеньев
- 6.2 Понятие передаточной функции
- 6.3 Динамические звенья первого порядка
- 6.3.1 Пропорциональное звено
- 6.3.2 Апериодическое (инерционное) звено первого порядка
- 6.3.3 Идеальное интегрирующее звено
- 6.3.5 Идеальное дифференцирующее звено
- 6.3.7 Звено чистого запаздывания
- 6.4 Класификация динамических звеньев второго порядка
- 6.5 Передаточные функции соединений динамических звеньев
- 6.5.3 Встречно-параллельное соединение звеньев
- 7 Частотные характеристики систем управления
- 7.1 Амплитудная и фазовая частотные характеристики
- 7.2 Совмещенная частотная характеристика
- 7.3 Частотная передаточная функция
- 7.4 Частотные функции соединений звеньев
- 7.5 Логарифмические частотные характеристики
- 8 Устойчивость систем автоматического управления
- 8.1 Понятие равновесия и устойчивости
- 8.2 Математические критерии устойчивости
- 8.3 Области устойчивости сау в фазовом пространстве
- 9 Технические средства автоматизации
- 9.1 Состав и функции технических средств
- 9.2 Общие требования к тса
- 9.3 Требования к технологическим датчикам
- 9.4 Исполнительные устройства и требования к ним
- 9.5 Регулирующие органы
- 9.6 Разработка технических средств автоматизации
- 10 Автоматические регулирующие устройства
- 10.1 Типовые оптимальные переходные процессы регулирования
- 10.2 Законы регулирования и автоматические регуляторы
- 10.3 Синтез законов регулирования
- 10.4 Оптимальное управление
- Микропроцессорная техника
- 11.1 Синтез логических управляющих устройств
- 11.2 Микропроцессорные системы
- 11.3 Структура и основные функции микроконтроллеров
- 12 Управляющие вычислительные комплексы
- 12.1 Принципы построения управляющих вычислительных комплексов
- 12.2 Технические и программные компоненты увк
- Основные технические компоненты обеспечивают процесс измерения и обработку полученной информации. К ним относятся:
- Общее прикладное по увк представляет собой организованную совокупность программных модулей, реализующих:
- 12.3 Требования к увк
- Рекомендуемая литература