logo
лекции / osnovy_teorii_upravleniya

Идеальное дифференцирующее звено

Дифференциальное уравнение звена имеет вид:

Воспользуемся преобразованием Лапласа и перепишем последнее уравнение:

y(s) =Tsx(s). .

Передаточная функция определится выражением:

Переходная характеристика такого звена определяется выражением:

,

где - импульсная дельта - функция. Переходная характеристика представляет собой импульс типа дельта - функции с площадью Т. Возможность представления реального звена идеальным дифференцирующим определяется соотношением постояной времени звена и дифференцируемого процесса. Чем больше инерция звена, тем с большей погрешностью оно будет дифференцировать быстро изменяющиеся функции. О близости реального звена к идеальному звену удобно судить по частотным характеристикам.

Отметим, что идеальный дифференциатор дает усиление гармонических колебаний, пропорционально частоте и опережение выходных колебаний по фазе независимо от частоты. Весьма близким к идеальному дифференцирующему звену является дифференцирующий усилитель с большим коэффициентом усиления. В той полосе частот, которая указана в паспорте усилителя, его передаточная функция

Выходная величина дифференцирующего звена при гармоническом воздействии пропорциональна частоте воздействия, и звено усиливает высокочастотные помехи, что сильно затрудняет его использование. Поэтому в моделирующих устройствах обычно стремятся обойтись без дифференцирующих звеньев. Это всегда возможно, если степень числителя передаточной функции моделирующего звена не выше степени знаменателя.