Управляемость и наблюдаемость
Дифференциальные уравнения многомерной системы управления могут быть представлены в форме Коши векторно - матричной записью вида:
(6.1) |
|
В этих выражениях используются следующие матрицы – столбцы: х- для фазовых координат системы, y- для управляемых величин,u- для управляющих величин,f– для возмущающих и задающих воздействий.
A, B, C, D, E– матрицы коэффициентов., (i= 1,2,…,n) представляют собой некоторые абстрактные величины, задание которых полностью определяет текущее состояние системы. Эти величины называются фазовыми координатами системы. Состояние системы может быть полностью отождествлено с положением изображающей точки вn– мерном пространстве, которое носит названиепространства состояний. Рассмотримn– мерное пространство состоянияХ, в котором каждому состоянию системы соответствует некоторое положение изображающей точки, определяемое значениями фазовых координат. Пусть в пространстве состоянийХзаданы два множества. Рассматриваемая система будет управляемой, если существует такое управлениеu(t), определенное на конечном интервале времени, которое переводит изображающую точку в пространствеХиз подобластив подоблась. Система будет полностью управляемой, если каждое состояние управляемо в этом смысле. Отметим, что на временном интервале траектория состояний системы однозначна для заданного входного сигнала. Когда часть управляющих величин не входит в некоторые дифференциальные уравнения (6.1) , то это говорит о том, что система будет не полностью управляемой. А если часть фазовых координат не участвует в формировании выходаy, то система считается не полностью наблюдаемой. Например, система управления, представленая уравнениями вида:
является не полностью управляемой, а система управления, представленная уравнениями вида:
является не полностью наблюдаемой.
-
Содержание
- Содержание
- Математическое моделирование систем управления
- Основные понятия
- Математическое описание динамики сар
- Аналитическое построение математической модели
- Задачи проектирования многомерных систем управления
- Преобразование Лапласа. Понятие передаточной функции
- Типовые воздействия
- Типовые звенья обыкновенных линейных систем
- Идеальное интегрирующее звено (интегратор)
- Идеальное дифференцирующее звено
- Неидеальное интегрирующее звено
- Дифференцирующее инерционное звено
- Идеальное форсирующее звено
- Апериодическое звено первого порядка
- Колебательное звено
- Топология систем управления. Способы соединения элементов
- Последовательное соединение
- Соединение с обратной связью
- Вычисление передаточных функций
- Свободное и вынужденное движение
- Характеристическое уравнение. Понятие корневого годографа
- Построение частотных характеристик
- Методы анализа качества систем управления
- Понятие устойчивости систем управления
- Критерии устойчивости Гурвица и Рауса (алгебраические)
- Критерии устойчивости Михайлова и Найквиста (частотные)
- Корневые показатели качества
- Анализ качества сау по переходной характеристике
- Анализ качества сау по частотным характеристикам
- Статические и астатические системы
- Основы оптимизации и методы синтеза систем управления
- Постановка задачи параметрической оптимизации
- Методика решения задачи параметрической оптимизации
- Синтез адаптивных систем управления
- 4.1.Постановка задачи синтеза самонастраивающихся систем
- Процедура синтеза закона управления
- Синтез адаптивного управления при помощи пи- регулятора
- Экстремальные системы управления
- Оптимальное управление
- Аналитическое конструирование регулятора
- Дискретные и цифровые системы управления
- Общие сведения
- Модели дискретных процессов
- Квантование непрерывных сигналов и теорема прерывания
- Использованиеz- преобразования
- Устойчивость и качество дискретных систем
- Цифровые системы управления
- Отдельные вопросы теории управления
- Управляемость и наблюдаемость
- Инвариантные системы управления
- Расчет и анализ чувствительности
- Робастные системы управления
- Литература