Характеристическое уравнение. Понятие корневого годографа
Передаточную функцию разомкнутой системы управления можно представить в виде:
Здесь k- числовой коэффициент, в который в качестве сомножителя входит коэффициент усиления сигнала в прямой цепи. Передаточная функция замкнутой системы управления с единичной отрицательной обратной связью определяется по формуле:
Уравнение B(s) + kA (s) = 0называется характеристическим. Его корни называются полюсами, а корни уравненияkA(s) = 0 называются нулями. Полюса и нули могут рассматриваться в качестве динамических характеристик наряду с переходными и частотными. При измененииkот0до бесконечности полюсы описывают в комплексной плоскости траектории, называемые корневым годографом, траектории могут иметь произвольную форму,определяемую уравнением динамики, например, гиперболу
По движению полюсов вдоль траекторий судят о свойствах системы управления. Отметим несколько основных свойств корневого годографа:
корневой годограф симметричен относительно действительной оси;
действительная ось принадлежит корневому годографу;
число ветвей корневого годографа определяется степенью характеристического уравнения.
Основное аналитическое уравнение траектории корней имеет вид алгебраического уравнения:
- .
Это уравнение позволяет по задаваемому значению найти, и наоборот, то естьуравнение дает возможность строить по точкам корневой годограф. Здесь приняты следующие обозначения:A(),B()- полиномыA(s)иB(s)соответственно после подстановкиs = . , - производные этих полиномов. Для многомерной системы управления число характеристических уравнений будет определяться числом управляемых параметров. Если все каналы управления связаны между собой, то характеристические уравнения всех каналов будут одинаковые.
- Содержание
- Математическое моделирование систем управления
- Основные понятия
- Математическое описание динамики сар
- Аналитическое построение математической модели
- Задачи проектирования многомерных систем управления
- Преобразование Лапласа. Понятие передаточной функции
- Типовые воздействия
- Типовые звенья обыкновенных линейных систем
- Идеальное интегрирующее звено (интегратор)
- Идеальное дифференцирующее звено
- Неидеальное интегрирующее звено
- Дифференцирующее инерционное звено
- Идеальное форсирующее звено
- Апериодическое звено первого порядка
- Колебательное звено
- Топология систем управления. Способы соединения элементов
- Последовательное соединение
- Соединение с обратной связью
- Вычисление передаточных функций
- Свободное и вынужденное движение
- Характеристическое уравнение. Понятие корневого годографа
- Построение частотных характеристик
- Методы анализа качества систем управления
- Понятие устойчивости систем управления
- Критерии устойчивости Гурвица и Рауса (алгебраические)
- Критерии устойчивости Михайлова и Найквиста (частотные)
- Корневые показатели качества
- Анализ качества сау по переходной характеристике
- Анализ качества сау по частотным характеристикам
- Статические и астатические системы
- Основы оптимизации и методы синтеза систем управления
- Постановка задачи параметрической оптимизации
- Методика решения задачи параметрической оптимизации
- Синтез адаптивных систем управления
- 4.1.Постановка задачи синтеза самонастраивающихся систем
- Процедура синтеза закона управления
- Синтез адаптивного управления при помощи пи- регулятора
- Экстремальные системы управления
- Оптимальное управление
- Аналитическое конструирование регулятора
- Дискретные и цифровые системы управления
- Общие сведения
- Модели дискретных процессов
- Квантование непрерывных сигналов и теорема прерывания
- Использованиеz- преобразования
- Устойчивость и качество дискретных систем
- Цифровые системы управления
- Отдельные вопросы теории управления
- Управляемость и наблюдаемость
- Инвариантные системы управления
- Расчет и анализ чувствительности
- Робастные системы управления
- Литература