Квантование непрерывных сигналов и теорема прерывания
Процедура преобразования сигнала непрерывного времени x(t)к дискретному (квантованному по времени) виду называетсяквантованием(рис. 5.4). Такая процедура отражает как реальные процессы, происходящие в цифровых системах управления, так и математические операции, использующиеся в различных сферах теории информации.
Рис. 5.4. Квантование непрерывного сигнала
В результате квантования получается импульсная последовательность
x(kT)(решетчатая функция), которая приt = kTсовпадает с исходным сигналом:
,
а в другие моменты времени она не определена. Потеря информации при квантовании зависит от величины интервала квантования Т или частоты квантования
.
Выбор интервала Тобычно осуществляется из соображений теоретической
возможности восстановления исходного сигнала по полученой в результате квантования импульсной последовательности (дискретной выборке), что отражает содержание известной теоремы прерывания (теоремы Котельникова – Шеннона).
Рассмотрим задачу нахождения сигнала x(t)по известной решетчатой функцииx(kT), полагая, что спектр сигналаx(t)ограничен частотой.
Тогда в соответствии с теоремой прерывания, точное восстановление функции x(t)теоретически возможно при условии, что частота квантования
более чем в 2 раза превосходит наибольшую частоту :
,
а для интервала квантования выполняется
.
Приведенный результат широко используется в задачах идентификации динамических систем и дискретизации непрерывных моделей.
-
Содержание
- Содержание
- Математическое моделирование систем управления
- Основные понятия
- Математическое описание динамики сар
- Аналитическое построение математической модели
- Задачи проектирования многомерных систем управления
- Преобразование Лапласа. Понятие передаточной функции
- Типовые воздействия
- Типовые звенья обыкновенных линейных систем
- Идеальное интегрирующее звено (интегратор)
- Идеальное дифференцирующее звено
- Неидеальное интегрирующее звено
- Дифференцирующее инерционное звено
- Идеальное форсирующее звено
- Апериодическое звено первого порядка
- Колебательное звено
- Топология систем управления. Способы соединения элементов
- Последовательное соединение
- Соединение с обратной связью
- Вычисление передаточных функций
- Свободное и вынужденное движение
- Характеристическое уравнение. Понятие корневого годографа
- Построение частотных характеристик
- Методы анализа качества систем управления
- Понятие устойчивости систем управления
- Критерии устойчивости Гурвица и Рауса (алгебраические)
- Критерии устойчивости Михайлова и Найквиста (частотные)
- Корневые показатели качества
- Анализ качества сау по переходной характеристике
- Анализ качества сау по частотным характеристикам
- Статические и астатические системы
- Основы оптимизации и методы синтеза систем управления
- Постановка задачи параметрической оптимизации
- Методика решения задачи параметрической оптимизации
- Синтез адаптивных систем управления
- 4.1.Постановка задачи синтеза самонастраивающихся систем
- Процедура синтеза закона управления
- Синтез адаптивного управления при помощи пи- регулятора
- Экстремальные системы управления
- Оптимальное управление
- Аналитическое конструирование регулятора
- Дискретные и цифровые системы управления
- Общие сведения
- Модели дискретных процессов
- Квантование непрерывных сигналов и теорема прерывания
- Использованиеz- преобразования
- Устойчивость и качество дискретных систем
- Цифровые системы управления
- Отдельные вопросы теории управления
- Управляемость и наблюдаемость
- Инвариантные системы управления
- Расчет и анализ чувствительности
- Робастные системы управления
- Литература