2.6.3. Критерий Михайлова
Итак, расположение корней характеристического уравнения на комплексной плоскости несёт полную информацию об устойчивости системы. Проблема заключается в том, что сложно или невозможно решить аналитически алгебраическое уравнение n– го порядка. Поэтому разработаны методы, позволяющие по косвенным признакам судить об устойчивости, не решая характеристического уравнения. Эти методы называются критериями устойчивости. Ниже будут рассмотрены два частотных критерия: критерий Михайлова и критерий Найквиста.
Пусть s1,s2,…,sn– корни характеристического уравнения системы. Из нихl корней неустойчивых а оставшиесяn-lкорней – устойчивых. Воспользовавшись теоремой Виета, представим характеристическое уравнение в виде
(2.65)
Подставляя в уравнение (2.65) вместо текущей переменной sеё значение s=jω, сформируем комплексный вектор
(2.66)
инайдем изменение фазы этого вектораϕAпри изменении частоты. Но векторпредставляется в (2.66) как произведение векторов разностей, следовательно, изменение фазыϕA равно сумме изменений фазы этих векторов разностей. Изображение векторов разностейна комплексной плоскости (см. рис 2.24) позволяет сделать следующее заключение:
все устойчивые вектора разностей , лежащие в левой полуплоскости, при изменении частоты ω в диапазонеповорачиваются против часовой стрелки на угол, равный 180˚,
все неустойчивые вектора разностей , лежащие в правой полуплоскости, при изменении частоты ω в диапазонеповорачиваются по часовой стрелке на угол, равный -180˚.
Таким образом,
.
Но, частотные характеристики симметричны относительно точки ω = 0. Поэтому изменение фазы вектора, называемое действительным, определяют при изменении частоты ω в диапазоне
. (2.67)
Если система в замкнутом состоянии устойчива (l = 0), то требуемое значение изменения фазы вектораравно
. (2.68)
Поскольку анализ устойчивости системы проводится в условиях, когда неизвестны значения корней характеристического уравнения, для определения нужно построить годограф вектора, годограф Михайлова, на комплексной плоскости и по нему найти значение.
Итак,
для того чтобы системав замкнутом состоянии былаустойчивой, необходимо, чтобы
=. (2.69)
Это означает, что годограф Михайлова в положительном направлении (против часовой стрелки) должен обойти nквадрантов, т. е. повернуться на угол, равный,
система не является устойчивой, если
< . (2.70)
т.е. нарушена последовательность обхода квадрантов,если при ω = 0 годограф Михайлова выходит из начала координат, то система находится на апериодической границе устойчивости,
если на некоторой частоте годограф Михайлова проходит через начало координат, то система находится на колебательной границе устойчивости.
- Радиоавтоматика Учебное пособие
- Оглавление
- 1 Основные понятия
- 1.1. Система автоматической подстройки частоты
- 1.2.. Система фазовой автоподстройки частоты
- 1.3. Система автоматического сопровождения цели бортовой рлс
- 1.4. Система автоматической регулировки усиления
- 1.5. Система измерения дальности рлс
- 1.6. Обобщенная структурная схема системыРа
- 1.7. Классификация систем ра
- 2. Линейные непрерывные системы автоматическогоуправления
- 2.1. Уравнение состояния системы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности.
- 2.3. Математические методы описания характеристики линейных непрерывных систем
- 2.3.1. Дифференциальные уравненияn-го порядка
- 2.3.2. Передаточная функция
- 2.3.3. Частотные характеристики
- 2.3.3.1. Комплексный коэффициент передачи
- 2.3.3.2. Амплитудно-фазовая характеристика (афх)
- 2.3.3.3. Логарифмические частотные характеристики (лах)
- 2.3.4. Временные характеристики
- 2.3.4.1. Импульсная переходная характеристика
- 2.3.4.2. Переходная характеристика
- 2.3.5. Методы определения временных характеристик
- 2.3.5.1. Классический метод
- 2.3.5.2. Методы, основанные на использовании преобразования Лапласа
- 2.3.5.3. Моделирование сау
- 2.4 Типовые звенья
- Идеальное усилительное звено.
- 2.4.2 Идеальное интегрирующее звено.
- 2.4.3 Инерционное звено.
- 2.4.3.1. Комплексный коэффициент передачи звена и его характеристики
- 2.4.3.2. Логарифмические частотные характеристики (лах)
- 2.4.3.3. Временные характеристики инерционного звена
- 2.4.4. Форсирующее звено
- 2.4.4.1. Передаточная функция форсирующего звена
- 2.4.4.2. Комплексный коэффициент передачи звена и его характеристики
- 2.4.5. Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6. Колебательное звено
- 2.5. Структурные преобразования
- 2.5.1. Стандартные соединения
- 2.5.1.1. Параллельное соединение элементов
- 2.5.1.2. Последовательное соединение элементов
- 2.5.1.3. Встречно – параллельное соединение элементов
- 2.5.2. Система с единичной отрицательной обратной связью
- 2.5.3. Системы с двумя входными воздействиями
- 2.6 Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости по расположению корней характеристического уравнения
- 2.6.3. Критерий Михайлова
- 2.6.4. Критерий Найквиста
- 2.6.4.1.Общий случай критерия Найквиста
- 2.6.4.2. Частный случай. Устойчивые в разомкнутом состоянии системы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели, определяемые по виду переходной характеристики
- 2.7.2.1. Показатели качества, определяемые по виду амплитудно – частотной характеристики системы в замкнутом состоянии .
- 2.7.2.2. Показатели качества, определяемые по виду логарифмических частотных характеристик
- 2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
- 2.8. Показатели точности в установившемся режиме работы системы
- 2.8.1. Ошибки по регулярному задающему воздействию х(t)
- 2.8.2. Ошибки, вызванные помехойf(t)
- 2.9. Техническое задание, запретные зоны
- 2.9.1. Техническое задание на проектирование системы
- 2.9.2. Построение запретных зон по колебательности
- 2.9.3. Построение запретных зон по точности
- 2.10. Коррекция системы
- 2.10.1. Последовательный корректирующий фильтр
- 2.10.2. Пример коррекции системы
- 2.10.2.1. Построение логарифмических частотных характеристик (лах).
- 2.10.2.2. Построение амплитудно – фазовой характеристики (афх).
- 2.10.2.3. Регулярные ошибки в установившемся режиме
- 2.10.2.4. Случайные ошибки в установившемся режиме
- 2.10.2. Применение последовательного корректирующего фильтра
- 2.10.3. Анализ полученных результатов
- 2.10.3.1. Применение фильтра с опережением по фазе
- 2.10.2.2. Применение фильтра с запаздыванием по фазе
- 3. Системы с прерывистым режимом работы
- 3.1. Импульсные системы радиоавтоматики
- Контрольные вопросы
- 3.2. Понятие о дискретных функциях и разностных уравнениях
- Контрольные вопросы
- 3.3. Дискретное преобразование Лапласа иZ- преобразование
- Изображение часто встречающихся функций времени
- 3.4. Передаточные функции импульсных автоматических систем
- 3.5. Оценка устойчивости импульсной автоматической системы
- Контрольные вопросы
- 3.6. Качество процессов в линейных импульсных системах
- Контрольные вопросы
- 3.7. Цифровые системы радиоавтоматики
- 3.8. Цифровая фильтрация
- Библиографический список
- 1 Основная литература
- 2 Дополнительная литература