3.6. Качество процессов в линейных импульсных системах
Основные показатели качества процессов в импульсных системах такие же, как и в непрерывных автоматических системах: время регулирования tp, величина перерегулирования σ и число перерегулированийп (показатели качества переходного процесса); точность работы систем в установившихся режимах.
В чем же особенности исследования качества импульсных автоматических систем?
Оценку показателей качества переходного процесса производят по импульсной переходной функции системы h(пТ) — реакции на единичную ступенчатую дискретную функциюХвх (пТ) = 1(пТ).
Изображение реакции системы в смыслеZ-преобразования находят по формуле (3.14)
Так как изображение единичной дискретной функции
то изображение дискретной переходной функции импульсной системы
Как видно из этой формулы, изображение можно представить в общем случае в виде отношения двух полиномов.
Следовательно, для нахождения Н(z) достаточно знать передаточную функцию замкнутой системыФ(z).
Далее, необходимо по изображению найти оригинал h(nT), т. е. осуществить операцию обратногоZ-преобразования. Эту задачу часто решают методом разложения функции в степенной ряд по отрицательным степенямz (делением полинома числителя на полином знаменателя). Коэффициенты полученного степенного ряда равны дискретным значениям импульсной переходной функции в моменты времениt =пТ. Другой метод требует разложенияН (z) на простые дроби.
Рассмотрим на примере методику оценки показателей качества переходных процессов импульсной системы, изображенной на рис. 14.1, при различных значениях ее параметров kvиT.
Изображение переходной функции системы с учетом формулы (19)
1. ПриkvТ= 1,5 изображение переходной функции системы
Врезультате деления числителя на знаменатель находим:
Коэффициенты степенного ряда определяют следующие значения дискретной переходной функции-оригинала:
и т. д.
График переходной функции для этого случая изображен на рис. 3.14, а. Анализ графика позволяет определить показатели качества переходного процесса: tp = 5Т сек; σ= 50%;п = 4.
Очевидно, что для уменьшения величины перерегулирования необходимо уменьшать произведение kvТ.
2. ПриkvТ= 1 изображение переходной функции системы
Дискреты переходной функции:
Из графика переходной функции, представленного на рис. 3.14,6, видно, что при kvТ = 1 в системе имеет место оптимальный по быстродействию переходный процесс, так как он завершается за один период дискретностиТ без перерегулирования .
Рис. 3.14. Переходные функции импульсной системы
ПриkvТ = 0,5 имеем:
Отсюда находим:
График этой функции, изображенный на рис. 3.14, в, близок к экспоненте. Время регулирования в этом случае tp = 5Тсек.
Проведенный анализ позволяет сделать важный вывод о том, что показатели качества переходного процесса импульсной системы существенно зависят от величины произведения коэффициента передачи kv на период дискретностиТ.
Точность импульсной системы оценивается величиной ошибки в установившихся режимах. Для расчета ошибки необходимо знать изображение задающего воздействия и передаточную функцию ошибки Фε(z). Методика вычисления дискретной функцииε(пТ) аналогична изложенной выше.
- Радиоавтоматика Учебное пособие
- Оглавление
- 1 Основные понятия
- 1.1. Система автоматической подстройки частоты
- 1.2.. Система фазовой автоподстройки частоты
- 1.3. Система автоматического сопровождения цели бортовой рлс
- 1.4. Система автоматической регулировки усиления
- 1.5. Система измерения дальности рлс
- 1.6. Обобщенная структурная схема системыРа
- 1.7. Классификация систем ра
- 2. Линейные непрерывные системы автоматическогоуправления
- 2.1. Уравнение состояния системы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности.
- 2.3. Математические методы описания характеристики линейных непрерывных систем
- 2.3.1. Дифференциальные уравненияn-го порядка
- 2.3.2. Передаточная функция
- 2.3.3. Частотные характеристики
- 2.3.3.1. Комплексный коэффициент передачи
- 2.3.3.2. Амплитудно-фазовая характеристика (афх)
- 2.3.3.3. Логарифмические частотные характеристики (лах)
- 2.3.4. Временные характеристики
- 2.3.4.1. Импульсная переходная характеристика
- 2.3.4.2. Переходная характеристика
- 2.3.5. Методы определения временных характеристик
- 2.3.5.1. Классический метод
- 2.3.5.2. Методы, основанные на использовании преобразования Лапласа
- 2.3.5.3. Моделирование сау
- 2.4 Типовые звенья
- Идеальное усилительное звено.
- 2.4.2 Идеальное интегрирующее звено.
- 2.4.3 Инерционное звено.
- 2.4.3.1. Комплексный коэффициент передачи звена и его характеристики
- 2.4.3.2. Логарифмические частотные характеристики (лах)
- 2.4.3.3. Временные характеристики инерционного звена
- 2.4.4. Форсирующее звено
- 2.4.4.1. Передаточная функция форсирующего звена
- 2.4.4.2. Комплексный коэффициент передачи звена и его характеристики
- 2.4.5. Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6. Колебательное звено
- 2.5. Структурные преобразования
- 2.5.1. Стандартные соединения
- 2.5.1.1. Параллельное соединение элементов
- 2.5.1.2. Последовательное соединение элементов
- 2.5.1.3. Встречно – параллельное соединение элементов
- 2.5.2. Система с единичной отрицательной обратной связью
- 2.5.3. Системы с двумя входными воздействиями
- 2.6 Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости по расположению корней характеристического уравнения
- 2.6.3. Критерий Михайлова
- 2.6.4. Критерий Найквиста
- 2.6.4.1.Общий случай критерия Найквиста
- 2.6.4.2. Частный случай. Устойчивые в разомкнутом состоянии системы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели, определяемые по виду переходной характеристики
- 2.7.2.1. Показатели качества, определяемые по виду амплитудно – частотной характеристики системы в замкнутом состоянии .
- 2.7.2.2. Показатели качества, определяемые по виду логарифмических частотных характеристик
- 2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
- 2.8. Показатели точности в установившемся режиме работы системы
- 2.8.1. Ошибки по регулярному задающему воздействию х(t)
- 2.8.2. Ошибки, вызванные помехойf(t)
- 2.9. Техническое задание, запретные зоны
- 2.9.1. Техническое задание на проектирование системы
- 2.9.2. Построение запретных зон по колебательности
- 2.9.3. Построение запретных зон по точности
- 2.10. Коррекция системы
- 2.10.1. Последовательный корректирующий фильтр
- 2.10.2. Пример коррекции системы
- 2.10.2.1. Построение логарифмических частотных характеристик (лах).
- 2.10.2.2. Построение амплитудно – фазовой характеристики (афх).
- 2.10.2.3. Регулярные ошибки в установившемся режиме
- 2.10.2.4. Случайные ошибки в установившемся режиме
- 2.10.2. Применение последовательного корректирующего фильтра
- 2.10.3. Анализ полученных результатов
- 2.10.3.1. Применение фильтра с опережением по фазе
- 2.10.2.2. Применение фильтра с запаздыванием по фазе
- 3. Системы с прерывистым режимом работы
- 3.1. Импульсные системы радиоавтоматики
- Контрольные вопросы
- 3.2. Понятие о дискретных функциях и разностных уравнениях
- Контрольные вопросы
- 3.3. Дискретное преобразование Лапласа иZ- преобразование
- Изображение часто встречающихся функций времени
- 3.4. Передаточные функции импульсных автоматических систем
- 3.5. Оценка устойчивости импульсной автоматической системы
- Контрольные вопросы
- 3.6. Качество процессов в линейных импульсных системах
- Контрольные вопросы
- 3.7. Цифровые системы радиоавтоматики
- 3.8. Цифровая фильтрация
- Библиографический список
- 1 Основная литература
- 2 Дополнительная литература