2.3.5.1. Классический метод
Метод основан на непосредственном интегрировании дифференциальных уравнений.
Для определения импульсной переходной характеристики интегрируют уравнение (2.11) после подстановки в него входного воздействияи его производных. Линейные системы всегда имеют нулевые начальные условия, т.е. привходное воздействиеотсутствует и выходная величинаи ееn-1 производных равны нулю. Дельта-функцияна входе и ее производная приводят прик скачкообразному изменению начальных условий, а далее их действия прекращаются и правая часть уравнения (2.11) в этих условиях становится равной нулю. Поэтому рассматривают начальные условия для моментов времени, сколь угодно приближающихся к нулю слева, и– справа от нуля.
(2.23,2.24)
При не все составляющие вектора начальных условийдолжны быть равны нулю.
Величина скачка вектора зависит только от параметров системы. В первую очередь – от соотношений между величинами порядковn и m, во вторую – от коэффициентовиуравнения (2.11). Формулы для вычисления составляющих вектораможно найти в литературе (например, в )
Таким образом, импульсная переходная характеристика определяется интегрированием линейного однородного дифференциального уравненияn-го порядка.
(2.25)
с начальными условиями (2.24).
Общее решение уравнения (2.25) имеет вид
(2.26)
где - постоянные интегрирования, определяемые начальными условиями (2.24),si – корни характеристического уравнения системы (2.15).
Характер изменения функции зависит исключительно от характера корнейsi. Подробный анализ решения уравнения (2.25) будет проведен при изучении устойчивости САУ.
Дифференциальное уравнение для переходной характеристики получается подстановкой функциии ее производных в уравнение (2.11) и интегрированием его при. И в этом случае припроисходит скачок начальных условий, т.е.
(2.27,2.28)
Формулы для вычисления можно найти в литературе, например, в .
Итак, для положительных моментов времени для переходной характеристики справедливо линейное неоднородное (с правой частью) дифференциальное уравнение n-го порядка
(2.29)
Общее решение
(2.30)
где – постоянные интегрирования, определяемые начальными условиями (2.27),– корни характеристического уравнения (2.26),– частное решение уравнения (2.28), определяемое видом его правой части.
- Радиоавтоматика Учебное пособие
- Оглавление
- 1 Основные понятия
- 1.1. Система автоматической подстройки частоты
- 1.2.. Система фазовой автоподстройки частоты
- 1.3. Система автоматического сопровождения цели бортовой рлс
- 1.4. Система автоматической регулировки усиления
- 1.5. Система измерения дальности рлс
- 1.6. Обобщенная структурная схема системыРа
- 1.7. Классификация систем ра
- 2. Линейные непрерывные системы автоматическогоуправления
- 2.1. Уравнение состояния системы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности.
- 2.3. Математические методы описания характеристики линейных непрерывных систем
- 2.3.1. Дифференциальные уравненияn-го порядка
- 2.3.2. Передаточная функция
- 2.3.3. Частотные характеристики
- 2.3.3.1. Комплексный коэффициент передачи
- 2.3.3.2. Амплитудно-фазовая характеристика (афх)
- 2.3.3.3. Логарифмические частотные характеристики (лах)
- 2.3.4. Временные характеристики
- 2.3.4.1. Импульсная переходная характеристика
- 2.3.4.2. Переходная характеристика
- 2.3.5. Методы определения временных характеристик
- 2.3.5.1. Классический метод
- 2.3.5.2. Методы, основанные на использовании преобразования Лапласа
- 2.3.5.3. Моделирование сау
- 2.4 Типовые звенья
- Идеальное усилительное звено.
- 2.4.2 Идеальное интегрирующее звено.
- 2.4.3 Инерционное звено.
- 2.4.3.1. Комплексный коэффициент передачи звена и его характеристики
- 2.4.3.2. Логарифмические частотные характеристики (лах)
- 2.4.3.3. Временные характеристики инерционного звена
- 2.4.4. Форсирующее звено
- 2.4.4.1. Передаточная функция форсирующего звена
- 2.4.4.2. Комплексный коэффициент передачи звена и его характеристики
- 2.4.5. Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6. Колебательное звено
- 2.5. Структурные преобразования
- 2.5.1. Стандартные соединения
- 2.5.1.1. Параллельное соединение элементов
- 2.5.1.2. Последовательное соединение элементов
- 2.5.1.3. Встречно – параллельное соединение элементов
- 2.5.2. Система с единичной отрицательной обратной связью
- 2.5.3. Системы с двумя входными воздействиями
- 2.6 Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости по расположению корней характеристического уравнения
- 2.6.3. Критерий Михайлова
- 2.6.4. Критерий Найквиста
- 2.6.4.1.Общий случай критерия Найквиста
- 2.6.4.2. Частный случай. Устойчивые в разомкнутом состоянии системы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели, определяемые по виду переходной характеристики
- 2.7.2.1. Показатели качества, определяемые по виду амплитудно – частотной характеристики системы в замкнутом состоянии .
- 2.7.2.2. Показатели качества, определяемые по виду логарифмических частотных характеристик
- 2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
- 2.8. Показатели точности в установившемся режиме работы системы
- 2.8.1. Ошибки по регулярному задающему воздействию х(t)
- 2.8.2. Ошибки, вызванные помехойf(t)
- 2.9. Техническое задание, запретные зоны
- 2.9.1. Техническое задание на проектирование системы
- 2.9.2. Построение запретных зон по колебательности
- 2.9.3. Построение запретных зон по точности
- 2.10. Коррекция системы
- 2.10.1. Последовательный корректирующий фильтр
- 2.10.2. Пример коррекции системы
- 2.10.2.1. Построение логарифмических частотных характеристик (лах).
- 2.10.2.2. Построение амплитудно – фазовой характеристики (афх).
- 2.10.2.3. Регулярные ошибки в установившемся режиме
- 2.10.2.4. Случайные ошибки в установившемся режиме
- 2.10.2. Применение последовательного корректирующего фильтра
- 2.10.3. Анализ полученных результатов
- 2.10.3.1. Применение фильтра с опережением по фазе
- 2.10.2.2. Применение фильтра с запаздыванием по фазе
- 3. Системы с прерывистым режимом работы
- 3.1. Импульсные системы радиоавтоматики
- Контрольные вопросы
- 3.2. Понятие о дискретных функциях и разностных уравнениях
- Контрольные вопросы
- 3.3. Дискретное преобразование Лапласа иZ- преобразование
- Изображение часто встречающихся функций времени
- 3.4. Передаточные функции импульсных автоматических систем
- 3.5. Оценка устойчивости импульсной автоматической системы
- Контрольные вопросы
- 3.6. Качество процессов в линейных импульсных системах
- Контрольные вопросы
- 3.7. Цифровые системы радиоавтоматики
- 3.8. Цифровая фильтрация
- Библиографический список
- 1 Основная литература
- 2 Дополнительная литература