2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
Как уже отмечалось, анализ системы стараются проводить на основе изучения ЛАХ. Но во всех случаях, вызывающих какие-либо сомнения необходимо использовать амплитудно-фазовую характеристику (АФХ) в разомкнутом состоянии (рис.3). В учебных целях эту характеристику необходимо использовать во всех вариантах задания.
Представляет большие трудности построение АФХ по аналитически полученным формулам. Учитывая, что для анализа системы большой точности не требуется, можно АФХ строить графически на основе имеющихся графиков ЛАХ. Действительно, ЛАХ позволяет для каждого значения частоты графически определить значение амплитуды А() (L() = 20lgA()) и фазы() и, используя полярную систему координат, построить точку, принадлежащую АФХ, на комплексной плоскости. Ниже при рассмотрении конкретного примера будет продемонстрирована методика построения АФХ.
Анализ АФХ позволяет сделать следующие выводы:
а). Еслисистемыустойчивы в разомкнутом состоянии(нулевые корниsi= 0, соответствующие интегрирующим звеньям, считаются условно устойчивыми, инерционным звеньям соответствуют устойчивые корни:si = –),
то в соответствии с критерием Найквиста замкнутая система устойчива, если АФХ не охватывает точку ( –1, 0)В случаях, когда передаточная функция системы в разомкнутом состояниисодержит интегрирующие звенья, АФХдополняется дугой бесконечно большого радиуса, поворачивающую против часовой стрелки низкочастотную часть характеристики на угол, равный девяносто градусам, помноженный на число интегрирующих звеньев (рис. 2.31).
b).Характерные частотысрикр и запасы устойчивостиAимогут быть определены и по АФХ и, естественно, их значения должны совпадать с полученными ранее с использованием ЛАХ.
c).Колебательность системы оценивается величинепоказателя колебательности M.
Показатель колебательностиM определяется по виду амплитудно – частотной характеристикиAз(ω) (см. рис. 2.29). Задавшись некоторым значением показателяM, на графике этой характеристики проводят прямую, параллельную оси частот. Эта прямая представляет собойлинию постоянного уровня показателя колебательности M на рассматриваемой характеристике. Доказывается (см. ), чтогеометрическое место точек, представляющее указанную линию постоянного уровня амплитудно – частотной характеристикиAз(ω) (см. рис. 2.29), переносится на комплексную плоскость с изображением АФХ.
На комплексной плоскости с изображением АФХ линии постоянного уровня показателя колебательности Мпредставляют собой окружности с центром в точке (–С, 0).ЕслиМ>1, тоС=, а радиус окружностиR=. Концы диаметра этой окружности находятся в точкахи(точкиAиBна рис 2.31).
Задаваясь рядом значений М, строят окружности, из которых образуетсясемейство линий постоянного уровня на комплексной плоскостис изображением АФХ. Если окружность постоянного уровня пересекает график АФХ, это означает, что соответствующее ей значениеМменьше максимального для рассматриваемой системы показателя колебательности. Для определенияпоказателя колебательноститребуется определить такое значениеМ, при котором окружность касается АФХ (окружности с меьшим значениемМцеликом находятся внутри с большим его значением).
На рис. 2.31 изображены линии постоянного уровня, которым соответствуют значения М, равные 1,5; 2; 2,5. Для рассматриваемой системы показатель колебательностиМ= 2.54, т.е. систему следует отнести к разряду сильно колебательных (таблица 2.4). Таким образом, построений на комплексной плоскости вполне достаточно, чтобы определить величинуМ, но для для большей наглядности можно построить графикАз =Аз().
- Радиоавтоматика Учебное пособие
- Оглавление
- 1 Основные понятия
- 1.1. Система автоматической подстройки частоты
- 1.2.. Система фазовой автоподстройки частоты
- 1.3. Система автоматического сопровождения цели бортовой рлс
- 1.4. Система автоматической регулировки усиления
- 1.5. Система измерения дальности рлс
- 1.6. Обобщенная структурная схема системыРа
- 1.7. Классификация систем ра
- 2. Линейные непрерывные системы автоматическогоуправления
- 2.1. Уравнение состояния системы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности.
- 2.3. Математические методы описания характеристики линейных непрерывных систем
- 2.3.1. Дифференциальные уравненияn-го порядка
- 2.3.2. Передаточная функция
- 2.3.3. Частотные характеристики
- 2.3.3.1. Комплексный коэффициент передачи
- 2.3.3.2. Амплитудно-фазовая характеристика (афх)
- 2.3.3.3. Логарифмические частотные характеристики (лах)
- 2.3.4. Временные характеристики
- 2.3.4.1. Импульсная переходная характеристика
- 2.3.4.2. Переходная характеристика
- 2.3.5. Методы определения временных характеристик
- 2.3.5.1. Классический метод
- 2.3.5.2. Методы, основанные на использовании преобразования Лапласа
- 2.3.5.3. Моделирование сау
- 2.4 Типовые звенья
- Идеальное усилительное звено.
- 2.4.2 Идеальное интегрирующее звено.
- 2.4.3 Инерционное звено.
- 2.4.3.1. Комплексный коэффициент передачи звена и его характеристики
- 2.4.3.2. Логарифмические частотные характеристики (лах)
- 2.4.3.3. Временные характеристики инерционного звена
- 2.4.4. Форсирующее звено
- 2.4.4.1. Передаточная функция форсирующего звена
- 2.4.4.2. Комплексный коэффициент передачи звена и его характеристики
- 2.4.5. Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6. Колебательное звено
- 2.5. Структурные преобразования
- 2.5.1. Стандартные соединения
- 2.5.1.1. Параллельное соединение элементов
- 2.5.1.2. Последовательное соединение элементов
- 2.5.1.3. Встречно – параллельное соединение элементов
- 2.5.2. Система с единичной отрицательной обратной связью
- 2.5.3. Системы с двумя входными воздействиями
- 2.6 Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости по расположению корней характеристического уравнения
- 2.6.3. Критерий Михайлова
- 2.6.4. Критерий Найквиста
- 2.6.4.1.Общий случай критерия Найквиста
- 2.6.4.2. Частный случай. Устойчивые в разомкнутом состоянии системы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели, определяемые по виду переходной характеристики
- 2.7.2.1. Показатели качества, определяемые по виду амплитудно – частотной характеристики системы в замкнутом состоянии .
- 2.7.2.2. Показатели качества, определяемые по виду логарифмических частотных характеристик
- 2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
- 2.8. Показатели точности в установившемся режиме работы системы
- 2.8.1. Ошибки по регулярному задающему воздействию х(t)
- 2.8.2. Ошибки, вызванные помехойf(t)
- 2.9. Техническое задание, запретные зоны
- 2.9.1. Техническое задание на проектирование системы
- 2.9.2. Построение запретных зон по колебательности
- 2.9.3. Построение запретных зон по точности
- 2.10. Коррекция системы
- 2.10.1. Последовательный корректирующий фильтр
- 2.10.2. Пример коррекции системы
- 2.10.2.1. Построение логарифмических частотных характеристик (лах).
- 2.10.2.2. Построение амплитудно – фазовой характеристики (афх).
- 2.10.2.3. Регулярные ошибки в установившемся режиме
- 2.10.2.4. Случайные ошибки в установившемся режиме
- 2.10.2. Применение последовательного корректирующего фильтра
- 2.10.3. Анализ полученных результатов
- 2.10.3.1. Применение фильтра с опережением по фазе
- 2.10.2.2. Применение фильтра с запаздыванием по фазе
- 3. Системы с прерывистым режимом работы
- 3.1. Импульсные системы радиоавтоматики
- Контрольные вопросы
- 3.2. Понятие о дискретных функциях и разностных уравнениях
- Контрольные вопросы
- 3.3. Дискретное преобразование Лапласа иZ- преобразование
- Изображение часто встречающихся функций времени
- 3.4. Передаточные функции импульсных автоматических систем
- 3.5. Оценка устойчивости импульсной автоматической системы
- Контрольные вопросы
- 3.6. Качество процессов в линейных импульсных системах
- Контрольные вопросы
- 3.7. Цифровые системы радиоавтоматики
- 3.8. Цифровая фильтрация
- Библиографический список
- 1 Основная литература
- 2 Дополнительная литература