3.8. Цифровая фильтрация
Цифровой фильтр — это устройство, осуществляющее преобразование одного дискретного сигнала xп в другой дискретный сигналуп, причем сами сигналыхп иуп представляют собой двоичные цифровые коды.
В общем случае выходной сигнал цифровою фильтра в момент времени t = пТ определяется значением входного сигнала в тот же момент времени, а также значениями входных и выходных сигналов в предшествующие моменты времени.
(3.24)
Если эта зависимость является линейной, то цифровой фильтр называется линейным, при этом выходная величина уп определяется выражением
(3.25)
Линейный дискретный фильтр обычно описывают с помощью передаточной функции, под которой понимают отношение Z-преобразования выходной величины кZ-преобразованию входной величины :
(3.26)
Выражение для передаточной функции можно получить из уравнения (3.25) , если обе его части подвергнуть операции Z-преобразования. Принимая во внимание, что
Получаем (3.27)
Из выражения (27) видно, что в общем случае передаточная функция линейного цифрового фильтра представляет собой отношение двух многочленов от z.
При построении цифровых фильтров существенным является вопрос их физической реализации, т.е. вопрос о том, любая ли передаточная функция вида (3.27) может быть реализована в виде схемы, построенной из физически осуществимых элементов, либо она может быть запрограммирована для микропроцессорной реализации фильтра.
Из уравнения (2.25) видно, что для получения уп необходимо выполнить следующие операции :
1. Получение сигналов xn-1 , ... , xn-m , уn-1 , ... , у п-lЭти сигналы можно получить изxп иуп , используя элементы задержки на один период квантования (рис. 3.16,а), в качестве которых могут служить запоминающие устройства . Последовательное включение нескольких ЗУ дает возможность задержать сигнал на произвольное число периодов квантования.
При микропроцессорной реализации цифровых фильтров для получения задержанных сигналов удобно использовать стек.
Умножение полученных на элементах задержки сигналов на постоян ные коэффициенты аk а bk (рис. 3.16,6).
Суммирование полученных сигналов, что может быть осуществлено программным путем или на сумматорах (рис. 18.1 ,в).
Рис. 3.16. Элементы цифровых фильтров
а - задержки на период квантования; б - умножения на постоянный коэффициент; в — сложения
Очевидно, единственным ограничением физической реализации разностного уравнения (3.25) является невозможность получения какого-либо из слагаемых правой части по той причине, что соответствующее слагаемое еще не появилось и, следовательно, не может быть получено путем его запоминания с целью задержки на заданное число периодов квантования. Таким образом, цифровой фильтр может быть физически реализован, если в правую часть уравнения (3.25) входят только настоящие и прошлые значения входной величины, но не входят будущие значения.
Покажем вид передаточной функции физически неосуществимого цифрового фильтра. Для этого в правую часть уравнения (25) должно входить слагаемое вида Ахп+s , соответствующее входной величине, которая будет получена через 5 шагов квантования. Очевидно, чтоZ- преобразование величиныАх п ,5равноАХ*(z)zs . При этом передаточная функция принимает вид
(3.28)
Вкачестве нормальной формы записи передаточной функции обычно принимают форму, при которой многочлены в числителе и знаменателе содержат только отрицательные степениz . Для приведения к нормальной форме разделим числитель и знаменатель передаточной функции (28) наzs :
(3.29)
Особенностью передаточной функции (3.29) является отсутствие в знаменателе свободного члена. Это и является признаком физической нереализуемости цифрового фильтра.
При представлении передаточной функции цифрового фильтра в виде отношения многочленов, содержащих только положительные степени z , признаком физически реализуемого фильтра является выполнение условия, что степень многочлена, стоящего в числителе передаточной функции, не должна превышать степени многочлена, стоящего в ее знаменателе.
Подведем итоги.
Наряду с автоматическими системами непрерывного действия все более широкое применение в различных областях техники находят дискретные системы. В этих системах применяется дискретное управление, при котором разность между требуемым и действительным значениями управляемой величины определяется лишь в течение коротких интервалов времени, разделенных паузами. Сигналы в дискретных системах описываются дискретными функциями времени.
Исследование динамики импульсных систем базируется на разностных уравнениях, дискретном преобразовании Лапласа и его разновидности — Z-преобразовании.
Применение цифровых вычислительных машин в сфере управления расширяет класс импульсных систем и повышает практический уровень методов исследования импульсных систем для производства. Речь идет о цифровых вычислительных машинах, включенных в контур управления. Здесь важно точно описать ЦВМ математически и получить единую систему разностных уравнений.
- Радиоавтоматика Учебное пособие
- Оглавление
- 1 Основные понятия
- 1.1. Система автоматической подстройки частоты
- 1.2.. Система фазовой автоподстройки частоты
- 1.3. Система автоматического сопровождения цели бортовой рлс
- 1.4. Система автоматической регулировки усиления
- 1.5. Система измерения дальности рлс
- 1.6. Обобщенная структурная схема системыРа
- 1.7. Классификация систем ра
- 2. Линейные непрерывные системы автоматическогоуправления
- 2.1. Уравнение состояния системы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности.
- 2.3. Математические методы описания характеристики линейных непрерывных систем
- 2.3.1. Дифференциальные уравненияn-го порядка
- 2.3.2. Передаточная функция
- 2.3.3. Частотные характеристики
- 2.3.3.1. Комплексный коэффициент передачи
- 2.3.3.2. Амплитудно-фазовая характеристика (афх)
- 2.3.3.3. Логарифмические частотные характеристики (лах)
- 2.3.4. Временные характеристики
- 2.3.4.1. Импульсная переходная характеристика
- 2.3.4.2. Переходная характеристика
- 2.3.5. Методы определения временных характеристик
- 2.3.5.1. Классический метод
- 2.3.5.2. Методы, основанные на использовании преобразования Лапласа
- 2.3.5.3. Моделирование сау
- 2.4 Типовые звенья
- Идеальное усилительное звено.
- 2.4.2 Идеальное интегрирующее звено.
- 2.4.3 Инерционное звено.
- 2.4.3.1. Комплексный коэффициент передачи звена и его характеристики
- 2.4.3.2. Логарифмические частотные характеристики (лах)
- 2.4.3.3. Временные характеристики инерционного звена
- 2.4.4. Форсирующее звено
- 2.4.4.1. Передаточная функция форсирующего звена
- 2.4.4.2. Комплексный коэффициент передачи звена и его характеристики
- 2.4.5. Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6. Колебательное звено
- 2.5. Структурные преобразования
- 2.5.1. Стандартные соединения
- 2.5.1.1. Параллельное соединение элементов
- 2.5.1.2. Последовательное соединение элементов
- 2.5.1.3. Встречно – параллельное соединение элементов
- 2.5.2. Система с единичной отрицательной обратной связью
- 2.5.3. Системы с двумя входными воздействиями
- 2.6 Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости по расположению корней характеристического уравнения
- 2.6.3. Критерий Михайлова
- 2.6.4. Критерий Найквиста
- 2.6.4.1.Общий случай критерия Найквиста
- 2.6.4.2. Частный случай. Устойчивые в разомкнутом состоянии системы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели, определяемые по виду переходной характеристики
- 2.7.2.1. Показатели качества, определяемые по виду амплитудно – частотной характеристики системы в замкнутом состоянии .
- 2.7.2.2. Показатели качества, определяемые по виду логарифмических частотных характеристик
- 2.7.2.3. Показатели качества, определяемые по виду амплитудно – фазовой характеристики системы в разомкнутом состоянии (афх)
- 2.8. Показатели точности в установившемся режиме работы системы
- 2.8.1. Ошибки по регулярному задающему воздействию х(t)
- 2.8.2. Ошибки, вызванные помехойf(t)
- 2.9. Техническое задание, запретные зоны
- 2.9.1. Техническое задание на проектирование системы
- 2.9.2. Построение запретных зон по колебательности
- 2.9.3. Построение запретных зон по точности
- 2.10. Коррекция системы
- 2.10.1. Последовательный корректирующий фильтр
- 2.10.2. Пример коррекции системы
- 2.10.2.1. Построение логарифмических частотных характеристик (лах).
- 2.10.2.2. Построение амплитудно – фазовой характеристики (афх).
- 2.10.2.3. Регулярные ошибки в установившемся режиме
- 2.10.2.4. Случайные ошибки в установившемся режиме
- 2.10.2. Применение последовательного корректирующего фильтра
- 2.10.3. Анализ полученных результатов
- 2.10.3.1. Применение фильтра с опережением по фазе
- 2.10.2.2. Применение фильтра с запаздыванием по фазе
- 3. Системы с прерывистым режимом работы
- 3.1. Импульсные системы радиоавтоматики
- Контрольные вопросы
- 3.2. Понятие о дискретных функциях и разностных уравнениях
- Контрольные вопросы
- 3.3. Дискретное преобразование Лапласа иZ- преобразование
- Изображение часто встречающихся функций времени
- 3.4. Передаточные функции импульсных автоматических систем
- 3.5. Оценка устойчивости импульсной автоматической системы
- Контрольные вопросы
- 3.6. Качество процессов в линейных импульсных системах
- Контрольные вопросы
- 3.7. Цифровые системы радиоавтоматики
- 3.8. Цифровая фильтрация
- Библиографический список
- 1 Основная литература
- 2 Дополнительная литература