40. Критерий Найквиста для случая устойчивой разомкнутой системы. Критический коэффициент усиления.
Сущность критерия Найквиста в том, что он позволяет по виду АФХ разомкнутой системы судить об устойчивости замкнутой системы. При этом АФХ разомкнутой системы может быть или получена расчетным путем из выражения для передаточной функции, или снята экспериментально. Пусть передаточная функция разомкнутой системы , так что АФХ равна . Рассмотрим новую функцию f(jω), связанную с соотношением . (14)
Здесь представляет собой годограф характеристического уравнения разомкнутой системы, а Д(jω) – замкнутой системы.
Критерий устойчивости рассмотрим для нескольких случаев.
a) Разомкнутая система устойчива. Устойчивость разомкнутой системы можно установить без всяких вычислений по структурной схеме системы. Так, например, разомкнутая система, состоящая из устойчивых звеньев и не содержащая обратных связей, всегда устойчива. Если имеются звенья, содержащие обратную связь, то эти звенья надо исследовать особо. Если разомкнутая система устойчива, то на основании критерия Михайлова изменение аргумента будет равно
, где n – степень характеристического уравнения разомкнутой системы, совпадающая со степенью характеристического многочлена замкнутой системы Д(р)=D(р)+К(р), т.к. для строго физически осуществимых систем степень К(р) меньше степени D(р). Изменение аргумента Д(jω) в общем случае равно
, где q – число корней характеристического уравнения Д(р)=0, лежащих в правой части комплексной плоскости, т.е. число правых корней.
Изменение аргумента f(jω) равно разности изменений аргументов числителя Д(jω) и знаменателя D(jω), т.е. .
Замкнутая система устойчива, если q=0, т.е. когда .
Если представить годограф f(jω) на комплексной плоскости (рис. 9), то нетрудно установить, что вектор f(jω) при изменении ω от 0 до ∞ опишет на комплексной плоскости угол, равный нулю, лишь в том случае, если годограф f(jω) не охватывает начала координат. В этом случае замкнутая система устойчива.
Рис. 9 Рис. 10
От годографа f(jω) нетрудно перейти к АФХ разомкнутой системы (рис. 10).
W(jω)=f(jω) - 1, которая представляет собой ту же кривую , но сдвинутую на единицу влево. При этом изменение аргумента при изменении ω от 0 до ∞ будет равно нулю, если АФХ разомкнутой системы не охватывает точку (-1,j0) (рис. 10).
Следовательно, если разомкнутая система устойчива, то замкнутая система будет также устойчива, при условии, что АФХ разомкнутой системы не охватывает точку (-1, j0).
Особо следует выделить случай, когда АФХ проходит через точку (-1, j0) и поэтому находится на колебательной границе устойчивости. Такому положению АФХ соответствует критический, или предельный коэффициент усиления kкр.
Запас устойчивости по амплитуде определяется как число, на которое должен быть умножен коэффициент усиления разомкнутой системы, чтобы замкнутая система оказалась на границе устойчивости. Таким образом, если коэффициент усиления устойчивой системы равен k и запас устойчивости определяется значением 1/h(величина 1/h, обратную расстоянию h от этой точки пересечения до начала координат), то критический коэффициент усиления kкр находится как
kкр = k*1/h.
Применительно к диаграмме Найквиста этот критерий звучит так: если разомкнутая система устойчива, то замкнутая система будет также устойчива, при условии, что диаграмма Найквиста не охватывает точку
(-1, j0) (Рис. 10.1).
Рис. 10.1
- 4,Ошибка воспроизведения.
- 5. Основные принципы управления. Разомкнутые системы. Управление с внутренней моделью.
- 6. Селективная инвариантность до при гармоническом задающем воздействии.
- Вопрос 7. Описание звеньев сау. Уравнение звена в изображениях и передаточная функция.
- Операторная (символическая) форма записи уравнения элемента
- 8 Чувствительность систем управления к изменению параметров
- 10. Понятие об инвариантных системах
- 12.Понятие о качестве сау. Точность работы сау в установившемся режиме.
- 1. Понятие о качестве системы
- 2. Точность работы сау в установившемся режиме.
- 13 Передаточные функции сау с прямой и обратой связью
- 14. Логарифмические частотные характеристики основных сомножителей передаточной функции
- 15. Реакция линейной замкнутой системы на внешние воздействия. Ду замкнутой системы. Пример
- 16. Вычисление коэффициентов ошибок с помощью передаточной функции по ошибке. Пример.
- Вопрос17. Стандартная форма представления передаточной функции разомкнутой системы.
- 20. Функция чувствительности и дополнительная функция чувствительности. Интуитивные требования к выбору управляющего устройства.
- 21. Корневые методы оценки качества переходного процесса. Оценка быстродействия.
- 22. Математическая модель двигателя постоянного тока
- 23 Понятие об устойчивости сау
- 24. Селективная абсолютная инвариантность к задающему воздействию в системах с единичной обратной связью. Принцип внутренней модели.
- 25. Алгебраический критерий устойчивости Гурвица.
- 26. Правила преобразования структурных схем.
- 27. Относительная устойчивость.
- 30( Как62). Фомирование частотных характеристик замкнутой системы. Ограничения на дополн. Ф-ю чувств. Смешанн чувствит.
- 32. Коррекция системы с опережением по фазе(реальный пд-регулятор)
- 34. Коррекция с помощью ку с отставанием по фазе
- 35. Уравнение звена в символической форме.
- 36. Понятие о корневом годографе.
- Вопрос 37. Описание элементов сау. Линеаризация.
- 38 Понятие о коэффициентах ошибок
- Вычисление коэффициентов ошибок с помощью пф по ошибке
- 39. Передаточные функции системы с единичной обратной связью.
- 40. Критерий Найквиста для случая устойчивой разомкнутой системы. Критический коэффициент усиления.
- 41. Критерий Найквиста для случая неустойчивой разомкнутой системы.
- 42. Линеаризация математической модели бака с жидкостью.
- 43 Понятие о коэффициентах ошибок
- Коэффициенты ошибок статических и астатических систем.
- 44.(Вкл в себя72) Количественная оценка неопределенностей модели объекта
- 45. Типовые динамические звенья и их характеристики. Интегрирующее звено. Дифференцирующие и форсирующие звенья.
- 46. Критерий Найквиста для случая нейтрально-устойчивой разомкнутой системы.
- Вопрос 47. Афх разомкнутой системы и ее предельные значения.
- 1) Замкнутая система неустойчива
- 50. Обеспечение астатизма по возмущающему воздействию.
- 2) Уравнение звена в изображениях. Передаточная функция звена (пф)
- 53 Минимально-фазовые звенья
- 54. Введение связей по возмущению
- 55. Построение лчх разомкнутой системы. Правила построения лачх. Пример.
- 56. Частотные методы оценки качества переходного процесса.
- Вопрос 57. Ошибка по возмущению.
- 58 Робастное качество.
- 59.Задача слежения и регулирования. Возмущения и ограничения.
- 60. Критерий Михайлова.
- 61. Показатели качества работы сау в переходном процессе при ступенчатом воздействии
- 62. Формирование частотных характеристик замкнутой системы
- 64, Параметрический синтез сау по методу лчх
- 65. Понятие о синтезе системы. Требования к проектируемой системе.
- 66. Методы робастного управления
- 67. Устойчивость по входу.
- 71.Внутренняя устойчивость замкнутой системы.
- 72. (Из44) Аддитивная и мультикативная неопределенности.Представление неопределенности в частотной (комплексной) области.