23 Понятие об устойчивости сау
Вопрос об устойчивости систем автоматического управления является основным в теории автоматического управления. Система автоматического управления состоит из объекта управления и управляющего устройства. Задачей управляющего устройства является поддержание системы в состоянии равновесия (т.е. в таком состоянии, при котором регулируемая величина – угол поворота, скорость, температура, напряжение и т.д. – сохраняет постоянное значение). Если система отклонилась от состояния равновесия (рабочей точки), то управляющее устройство вновь должно привести ее к этому состоянию. Поэтому проектирование системы начинается с определения тех состояний равновесия, которые система должна поддерживать.
Состояние равновесия нелинейной системы можно определить или аналитическим путем, решая нелинейное алгебраическое уравнение, соответствующее постоянству управляемой величины системы, или графоаналитическим путем, зная статические характеристики, связывающие выходные и входные величины всех элементов системы. Однако при таком определении всегда возникает вопрос: может ли физически существовать в системе найденное расчетным путем состояние равновесия? На простом примере легко показать, что найденные расчетным путем состояния равновесия не всегда могут существовать физически. Рассмотрим поверхность сложной формы, на которой находится шарик (рис. 1).
Р ис. 1
Нужно найти положение равновесия шарика на этой поверхности. На шарик действует сила ,
состоящая из двух составляющих, одна из которых FN уравновешивается реакцией со стороны поверхности, другая вызывает движение шарика вниз. Состояние равновесия будет иметь место, если =0, т.е. в точках А и В, где касательная к поверхности горизонтальна.
Таким образом, теоретический расчет дает два состояния равновесия для данной системы. Но если подойти к рассмотрению вопроса с практической стороны, то сразу видно, что в точке А шарик находиться не может. Поэтому состояние равновесия , соответствующее точке А, называется неустойчивым.
Состояние равновесия в точке В является устойчивым. Это означает, что даное состояние физически осуществимо в системе. Дадим более строгие определения устойчивого и неустойчивого состояний равновесия.
Для суждения об устойчивости состояния равновесия необходимо вывести систему из этого состояния путем приложения внешнего возмущения и наблюдать характер свободного движения системы после прекращения действия этого возмущения.
Состояние равновесия системы автоматического управления будет устойчивым, если после устранения возмущающего воздействия система с течением времени вновь возвращается к этому состоянию. Состояние равновесия системы является неустойчивым, если после устранения возмущающего воздействия система продолжает удаляться от состояния равновесия.
Таким образом, аналитическое рассмотрение вопроса о равновесии системы может привести к нахождению неустойчивого состояния равновесия. Поэтому всегда необходимо проверить, будет ли найденное состояние равновесия устойчивым. Это первая задача теории устойчивости.
Величина отклонения от состояния равновесия определяет «устойчивость в малом» и «устойчивость в большом». Если анализ устойчивости системы проводится при малых отклонениях от состояния равновесия, то говорят об «устойчивости в малом». Если же анализируется поведение системы при больших отклонениях от состояния равновесия, то говорят об «устойчивости в большом».
При анализе линеаризованных или линейных систем автоматического управления, являющихся линейной моделью реальных нелинейных систем, справедливой при малых отклонениях от состояния равновесия, рассматривается вопрос об «устойчивости в малом». Эта линейная модель приемлема лишь для конкретного состояния равновесия. Поэтому в случае анализа линейных систем, по существу, исследуется «устойчивость в малом» лишь одного определенного состояния равновесия нелинейной системы, которое может быть или устойчивым, или неустойчивым. Следовательно, по отношению к линейной системе удобнее говорить просто об ее устойчивости или неустойчивости, не затрагивая вопроса о состоянии равновесия. Рассмотрим условия устойчивости линейных систем.
- 4,Ошибка воспроизведения.
- 5. Основные принципы управления. Разомкнутые системы. Управление с внутренней моделью.
- 6. Селективная инвариантность до при гармоническом задающем воздействии.
- Вопрос 7. Описание звеньев сау. Уравнение звена в изображениях и передаточная функция.
- Операторная (символическая) форма записи уравнения элемента
- 8 Чувствительность систем управления к изменению параметров
- 10. Понятие об инвариантных системах
- 12.Понятие о качестве сау. Точность работы сау в установившемся режиме.
- 1. Понятие о качестве системы
- 2. Точность работы сау в установившемся режиме.
- 13 Передаточные функции сау с прямой и обратой связью
- 14. Логарифмические частотные характеристики основных сомножителей передаточной функции
- 15. Реакция линейной замкнутой системы на внешние воздействия. Ду замкнутой системы. Пример
- 16. Вычисление коэффициентов ошибок с помощью передаточной функции по ошибке. Пример.
- Вопрос17. Стандартная форма представления передаточной функции разомкнутой системы.
- 20. Функция чувствительности и дополнительная функция чувствительности. Интуитивные требования к выбору управляющего устройства.
- 21. Корневые методы оценки качества переходного процесса. Оценка быстродействия.
- 22. Математическая модель двигателя постоянного тока
- 23 Понятие об устойчивости сау
- 24. Селективная абсолютная инвариантность к задающему воздействию в системах с единичной обратной связью. Принцип внутренней модели.
- 25. Алгебраический критерий устойчивости Гурвица.
- 26. Правила преобразования структурных схем.
- 27. Относительная устойчивость.
- 30( Как62). Фомирование частотных характеристик замкнутой системы. Ограничения на дополн. Ф-ю чувств. Смешанн чувствит.
- 32. Коррекция системы с опережением по фазе(реальный пд-регулятор)
- 34. Коррекция с помощью ку с отставанием по фазе
- 35. Уравнение звена в символической форме.
- 36. Понятие о корневом годографе.
- Вопрос 37. Описание элементов сау. Линеаризация.
- 38 Понятие о коэффициентах ошибок
- Вычисление коэффициентов ошибок с помощью пф по ошибке
- 39. Передаточные функции системы с единичной обратной связью.
- 40. Критерий Найквиста для случая устойчивой разомкнутой системы. Критический коэффициент усиления.
- 41. Критерий Найквиста для случая неустойчивой разомкнутой системы.
- 42. Линеаризация математической модели бака с жидкостью.
- 43 Понятие о коэффициентах ошибок
- Коэффициенты ошибок статических и астатических систем.
- 44.(Вкл в себя72) Количественная оценка неопределенностей модели объекта
- 45. Типовые динамические звенья и их характеристики. Интегрирующее звено. Дифференцирующие и форсирующие звенья.
- 46. Критерий Найквиста для случая нейтрально-устойчивой разомкнутой системы.
- Вопрос 47. Афх разомкнутой системы и ее предельные значения.
- 1) Замкнутая система неустойчива
- 50. Обеспечение астатизма по возмущающему воздействию.
- 2) Уравнение звена в изображениях. Передаточная функция звена (пф)
- 53 Минимально-фазовые звенья
- 54. Введение связей по возмущению
- 55. Построение лчх разомкнутой системы. Правила построения лачх. Пример.
- 56. Частотные методы оценки качества переходного процесса.
- Вопрос 57. Ошибка по возмущению.
- 58 Робастное качество.
- 59.Задача слежения и регулирования. Возмущения и ограничения.
- 60. Критерий Михайлова.
- 61. Показатели качества работы сау в переходном процессе при ступенчатом воздействии
- 62. Формирование частотных характеристик замкнутой системы
- 64, Параметрический синтез сау по методу лчх
- 65. Понятие о синтезе системы. Требования к проектируемой системе.
- 66. Методы робастного управления
- 67. Устойчивость по входу.
- 71.Внутренняя устойчивость замкнутой системы.
- 72. (Из44) Аддитивная и мультикативная неопределенности.Представление неопределенности в частотной (комплексной) области.