Дифференцирование обобщенных функций
Пусть T – функционал на K, определяемый непрерывной функцией f,
.
Его производной dT/dx называется функционал, определяемый выражением
.
Интегрирование по частям с учетом того, что каждая основная функция обращается в нуль вне некоторого конечного интервала, дает выражение
.
Таким образом, получено выражение для производной функционала dT/dx, в котором производная функции f не используется. Отсюда следует, что производной dT/dx обобщенной функции T является функционал, определяемый выражением
.
Поскольку имеет непрерывные производные любых порядков, то функционал, определяемый этим соотношением, линеен и непрерывен. То есть является обобщенной функцией. Аналогично определяются вторая, третья и прочие производные. Из определения следует, что всякая обобщенная функция имеет производные всех порядков.
Пример 1.1. Пусть f – регулярная (обычная) функция, производная которой существует и непрерывна. Тогда производная от нее как от обобщенной функции совпадает с ее производной в обычном смысле. Действительно,
.
Пример 1.2. Пусть
.
Эта функция Хевисайда определяет линейный функционал
.
В соответствии с введенным определением производной обобщенной функции
,
поскольку обращается в нуль на бесконечности. Таким образом, производная функции Хевисайда1 есть -функция.
Пример 1.3. Из примеров 1.1 и 1.2 ясно, что если f – функция, имеющая в точках x1, x2, … скачки, равные h1, h2, …, и дифференцируема в обычном смысле в остальных точках, то производная от нее как от обобщенной функции представляет собой сумму обычной производной (в тех точках, где она существует) и выражения вида .
Пример 1.4. Определим производную как обобщенную функцию.
.
Таким образом, производная как обобщенной функции равна , где h(x) – функция Хевисайда.
- Численные методы
- Часть 3
- Содержание
- Введение
- Классификация методов взвешенных невязок
- Частные случаи метода взвешенных невязок
- Метод моментов
- Метод коллокаций
- Метод подобластей
- Метод наименьших квадратов
- Метод конечных разностей
- Расширение понятия функции
- Пространство основных функций
- Обобщенные функции
- Дифференцирование обобщенных функций
- Сходимость метода взвешенных невязок Основные понятия и определения
- Обобщенное решение дифференциального уравнения
- Сходимость метода конечных элементов
- Контрольные вопросы и задания
- Аппроксимация функций
- Функции одной переменной
- Кусочно-постоянные функции
- Кусочно-линейные функции
- Функции высших степеней
- Иерархические многочлены
- Функции двух переменных Треугольные конечные элементы. Линейная аппроксимация
- Квадратичная аппроксимация
- Четырехугольные конечные элементы
- Функции трех переменных
- Контрольные вопросы и задания
- Задачи теплопроводности
- Уравнение стационарной теплопроводности
- Аппроксимация решения кусочно-линейными функциями
- Процедура ансамблирования конечных элементов
- Аппроксимация решения кусочно-квадратичными функциями
- Использование иерархических многочленов
- Уравнение нестационарной теплопроводности
- Контрольные вопросы и задания
- ЗадачИ механики деформируемого твердого тела Постановка задачи
- Разрешающие соотношения метода взвешенных невязок Уравнение равновесия
- Физические уравнения
- Геометрические уравнения
- Ансамблирование конечных элементов
- Плоско-деформированное состояние
- 4 Узел 3 узел 3 узел
- 1 Элемент
- 2 Элемент
- Плоско-напряженное состояние
- Осесимметричное напряженно-деформированное состояние
- Решение задач упругопластичности
- Метод переменных параметров упругости
- Метод дополнительных нагрузок
- Контрольные вопросы и задания
- ЗадачИ механики жидкости
- Уравнения движения в переменных «функция тока – вихрь скорости»
- Граничные условия
- Граничные условия для функции тока
- Граничные условия для функции завихренности
- Соотношения метода взвешенных невязок
- Разрешающие соотношения для функции тока
- Разрешающие соотношения для функции завихренности
- Разрешающие соотношения для поля давления
- Алгоритм решения задачи
- Контрольные вопросы и задания
- Метод граничных элементов
- Фундаментальное решение
- Построение фундаментального решения
- Контрольные вопросы и задания
- Предметный указатель
- Библиографический список
- Приложение Бояршинов Михаил Геннадьевич Численные методы
- Часть 3