Уравнение стационарной теплопроводности
Распределение температуры в одномерном тонком однородном стержне, теплоизолированном с боковой поверхности (рис. 3 .0, а), описывается параболическим уравнением стационарной теплопроводности
(3.0)
с граничными условиями1
(3.1)
Здесь обозначено: T(x) – температура, W – мощность внутреннего теплового источника, Q0, Q1 – проекции векторов тепловых потоков на внешние нормали к торцевым поверхностям стержня на левом и правом концах, – коэффициент теплопроводности. Для упрощения выкладок будем считать W и постоянными величинами.
Q0 Q1
L
а
qi qj x
xi h xj
б
Рис. 3.0. Схема одномерной задачи теплопроводности (а) и отдельный элемент рассматриваемого стержня (б)
- Численные методы
- Часть 3
- Содержание
- Введение
- Классификация методов взвешенных невязок
- Частные случаи метода взвешенных невязок
- Метод моментов
- Метод коллокаций
- Метод подобластей
- Метод наименьших квадратов
- Метод конечных разностей
- Расширение понятия функции
- Пространство основных функций
- Обобщенные функции
- Дифференцирование обобщенных функций
- Сходимость метода взвешенных невязок Основные понятия и определения
- Обобщенное решение дифференциального уравнения
- Сходимость метода конечных элементов
- Контрольные вопросы и задания
- Аппроксимация функций
- Функции одной переменной
- Кусочно-постоянные функции
- Кусочно-линейные функции
- Функции высших степеней
- Иерархические многочлены
- Функции двух переменных Треугольные конечные элементы. Линейная аппроксимация
- Квадратичная аппроксимация
- Четырехугольные конечные элементы
- Функции трех переменных
- Контрольные вопросы и задания
- Задачи теплопроводности
- Уравнение стационарной теплопроводности
- Аппроксимация решения кусочно-линейными функциями
- Процедура ансамблирования конечных элементов
- Аппроксимация решения кусочно-квадратичными функциями
- Использование иерархических многочленов
- Уравнение нестационарной теплопроводности
- Контрольные вопросы и задания
- ЗадачИ механики деформируемого твердого тела Постановка задачи
- Разрешающие соотношения метода взвешенных невязок Уравнение равновесия
- Физические уравнения
- Геометрические уравнения
- Ансамблирование конечных элементов
- Плоско-деформированное состояние
- 4 Узел 3 узел 3 узел
- 1 Элемент
- 2 Элемент
- Плоско-напряженное состояние
- Осесимметричное напряженно-деформированное состояние
- Решение задач упругопластичности
- Метод переменных параметров упругости
- Метод дополнительных нагрузок
- Контрольные вопросы и задания
- ЗадачИ механики жидкости
- Уравнения движения в переменных «функция тока – вихрь скорости»
- Граничные условия
- Граничные условия для функции тока
- Граничные условия для функции завихренности
- Соотношения метода взвешенных невязок
- Разрешающие соотношения для функции тока
- Разрешающие соотношения для функции завихренности
- Разрешающие соотношения для поля давления
- Алгоритм решения задачи
- Контрольные вопросы и задания
- Метод граничных элементов
- Фундаментальное решение
- Построение фундаментального решения
- Контрольные вопросы и задания
- Предметный указатель
- Библиографический список
- Приложение Бояршинов Михаил Геннадьевич Численные методы
- Часть 3