Уравнение нестационарной теплопроводности
Рассматривается одномерное уравнение нестационарной теплопроводности для тонкого однородного стержня с теплоизолированной боковой поверхностью
(3.18)
с граничными
(3.19)
и начальными условиями
. (3.20)
Здесь дополнительно введены обозначения: c – удельная теплоемкость, – плотность материала. Как и ранее, для упрощения W, c, и считаются постоянными величинами.
Весь отрезок длиной L разбивается на ряд равных отрезков длиной h каждый. Решение задачи на произвольном отрезке [xi, xj] строится с помощью разделения переменных в виде
.
Например, для кусочно-линейной аппроксимации это выражение представляется в форме
. (3.21)
Невязка уравнения ( 3 .18), получаемая на решении ( 3 .21), взвешивается с весовыми функциями i и j,
(3.22)
Выполняются преобразования первого из этих уравнений:
,
,
.
Учитывая, как и ранее, что
,
последнее соотношение приводится к виду
.
Подстановка разложения ( 3 .21) приводит к выражению
.
Аналогичные преобразования второго уравнения системы ( 3 .22) приводят к соотношению
.
В сравнении с системой уравнений ( 3 .5) и ( 3 .6) последние выражения содержат дополнительные слагаемые, которые определяются с учетом вида функций и :
,
,
.
Теперь система обыкновенных дифференциальных уравнений относительно узловых значений температуры Ti(t) и Tj(t) имеет вид:
Удобно полученную систему уравнений представить в матричной форме
. (3.23)
Здесь использованы матричные обозначения:
, , , .
Для интегрирования системы обыкновенных дифференциальных уравнений ( 3 .23) могут быть использованы схемы
-
явная
,
-
неявная
,
-
Крэнка-Николсона
.
Последняя разностная схема в виде системы линейных алгебраических уравнений
наиболее часто используется при решении прикладных задач нестационарной теплопроводности. Использование процедуры ансамблирования для всех конечных элементов, аппроксимирующих рассматриваемый стержень, позволяет исключить внутренние неизвестные тепловые потоки qi и qj.
- Численные методы
- Часть 3
- Содержание
- Введение
- Классификация методов взвешенных невязок
- Частные случаи метода взвешенных невязок
- Метод моментов
- Метод коллокаций
- Метод подобластей
- Метод наименьших квадратов
- Метод конечных разностей
- Расширение понятия функции
- Пространство основных функций
- Обобщенные функции
- Дифференцирование обобщенных функций
- Сходимость метода взвешенных невязок Основные понятия и определения
- Обобщенное решение дифференциального уравнения
- Сходимость метода конечных элементов
- Контрольные вопросы и задания
- Аппроксимация функций
- Функции одной переменной
- Кусочно-постоянные функции
- Кусочно-линейные функции
- Функции высших степеней
- Иерархические многочлены
- Функции двух переменных Треугольные конечные элементы. Линейная аппроксимация
- Квадратичная аппроксимация
- Четырехугольные конечные элементы
- Функции трех переменных
- Контрольные вопросы и задания
- Задачи теплопроводности
- Уравнение стационарной теплопроводности
- Аппроксимация решения кусочно-линейными функциями
- Процедура ансамблирования конечных элементов
- Аппроксимация решения кусочно-квадратичными функциями
- Использование иерархических многочленов
- Уравнение нестационарной теплопроводности
- Контрольные вопросы и задания
- ЗадачИ механики деформируемого твердого тела Постановка задачи
- Разрешающие соотношения метода взвешенных невязок Уравнение равновесия
- Физические уравнения
- Геометрические уравнения
- Ансамблирование конечных элементов
- Плоско-деформированное состояние
- 4 Узел 3 узел 3 узел
- 1 Элемент
- 2 Элемент
- Плоско-напряженное состояние
- Осесимметричное напряженно-деформированное состояние
- Решение задач упругопластичности
- Метод переменных параметров упругости
- Метод дополнительных нагрузок
- Контрольные вопросы и задания
- ЗадачИ механики жидкости
- Уравнения движения в переменных «функция тока – вихрь скорости»
- Граничные условия
- Граничные условия для функции тока
- Граничные условия для функции завихренности
- Соотношения метода взвешенных невязок
- Разрешающие соотношения для функции тока
- Разрешающие соотношения для функции завихренности
- Разрешающие соотношения для поля давления
- Алгоритм решения задачи
- Контрольные вопросы и задания
- Метод граничных элементов
- Фундаментальное решение
- Построение фундаментального решения
- Контрольные вопросы и задания
- Предметный указатель
- Библиографический список
- Приложение Бояршинов Михаил Геннадьевич Численные методы
- Часть 3