Обобщенные функции
Обобщенной функцией, заданной на прямой , называется всякий непрерывный функционал T() на основном пространстве K. При этом непрерывность функционала понимается в том смысле, что , если последовательность n сходится к в основном пространстве K.
Всякая интегрируемая на любом конечном интервале функция f порождает некоторую обобщенную функцию. Выражение
(1.18)
есть непрерывный линейный функционал на K. Такие обобщенные функции называются регулярными, а все прочие, не представимые в виде ( 1 .18), – сингулярными. В качестве примера служит -функция, определяемая в виде
,
и ставящая в соответствие функции ее значение в точке x = 0. Это непрерывный линейный функционал на K, то есть обобщенная функция. Этот функционал обычно записывается в виде
,
причем под (x) понимается функция, равная нулю при всех и обращающаяся в точке x = 0 в бесконечность, так что
.
Очевидно, если , то
.
Важно подчеркнуть, что -функция Дирака2 есть обобщенная функция, определенная на K.
Еще один пример – смещенная -функция. Пусть
.
Как и в предыдущем случае, этот функционал можно представить в виде
.
- Численные методы
- Часть 3
- Содержание
- Введение
- Классификация методов взвешенных невязок
- Частные случаи метода взвешенных невязок
- Метод моментов
- Метод коллокаций
- Метод подобластей
- Метод наименьших квадратов
- Метод конечных разностей
- Расширение понятия функции
- Пространство основных функций
- Обобщенные функции
- Дифференцирование обобщенных функций
- Сходимость метода взвешенных невязок Основные понятия и определения
- Обобщенное решение дифференциального уравнения
- Сходимость метода конечных элементов
- Контрольные вопросы и задания
- Аппроксимация функций
- Функции одной переменной
- Кусочно-постоянные функции
- Кусочно-линейные функции
- Функции высших степеней
- Иерархические многочлены
- Функции двух переменных Треугольные конечные элементы. Линейная аппроксимация
- Квадратичная аппроксимация
- Четырехугольные конечные элементы
- Функции трех переменных
- Контрольные вопросы и задания
- Задачи теплопроводности
- Уравнение стационарной теплопроводности
- Аппроксимация решения кусочно-линейными функциями
- Процедура ансамблирования конечных элементов
- Аппроксимация решения кусочно-квадратичными функциями
- Использование иерархических многочленов
- Уравнение нестационарной теплопроводности
- Контрольные вопросы и задания
- ЗадачИ механики деформируемого твердого тела Постановка задачи
- Разрешающие соотношения метода взвешенных невязок Уравнение равновесия
- Физические уравнения
- Геометрические уравнения
- Ансамблирование конечных элементов
- Плоско-деформированное состояние
- 4 Узел 3 узел 3 узел
- 1 Элемент
- 2 Элемент
- Плоско-напряженное состояние
- Осесимметричное напряженно-деформированное состояние
- Решение задач упругопластичности
- Метод переменных параметров упругости
- Метод дополнительных нагрузок
- Контрольные вопросы и задания
- ЗадачИ механики жидкости
- Уравнения движения в переменных «функция тока – вихрь скорости»
- Граничные условия
- Граничные условия для функции тока
- Граничные условия для функции завихренности
- Соотношения метода взвешенных невязок
- Разрешающие соотношения для функции тока
- Разрешающие соотношения для функции завихренности
- Разрешающие соотношения для поля давления
- Алгоритм решения задачи
- Контрольные вопросы и задания
- Метод граничных элементов
- Фундаментальное решение
- Построение фундаментального решения
- Контрольные вопросы и задания
- Предметный указатель
- Библиографический список
- Приложение Бояршинов Михаил Геннадьевич Численные методы
- Часть 3