3.4.2. Каналы передачи данных
Среда передачи данных – совокупность линий передачи данных и блоков взаимодействия (т. е. сетевого оборудования, не входящего в станции данных), предназначенных для передачи данных между станциями данных. Среды передачи данных могут быть общего пользования или выделенными для конкретного пользователя.
Линия передачи данных – средства, которые используются в информационных сетях для распространения сигналов в нужном направлении. Примерами линий передачи данных являются коаксиальный кабель, витая пара проводов, световод.
Характеристиками линий передачи данных выступают зависимости затухания сигнала от частоты и расстояния. Затухание принято оценивать в децибеллах, 1 дБ = 10 Ig (Р1/Р2), где Р1 и Р2 – мощности сигнала на входе и выходе линии соответственно.
При заданной длине можно определить полосу пропускания (полосу частот) линии. Полоса пропускания связана со скоростью передачи информации. Различают бодовую (модуляционную) и информационную скорости. Бодовая скорость измеряется в бодах, т. е. числом изменений дискретного сигнала в единицу времени, а информационная -п числом битов информации, переданных в единицу времени. Именно бодовая скорость определяется полосой пропускания линии.
Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число градаций модулируемого параметра несущей равно 2N. Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с.
Максимально возможная информационная скорость V связана с полосой пропускания F канала связи формулой Хартли–Шеннона (предполагается, что одно изменение величины сигнала приходится на Iog2k бит, где k – число возможных дискретных значений сигнала), бит/с,
V = 2 F Iog2k,
где k = 1 + А; А – отношение мощности сигнала/мощности помехи.
Канал (канал связи) – средство односторонней передачи данных. Примером канала может быть полоса частот, выделенная одному передатчику при радиосвязи. В некоторой линии можно образовать несколько каналов связи, по каждому из которых передается своя информация, т. е. линия разделяется между несколькими каналами. Существуют два метода разделения линии передачи данных: временное мультиплексирование (иначе разделение по времени, или TDM), при котором каждому каналу выделяется некоторый квант времени, и частотное разделение (FDM – Frequency Division Method), при котором каналу выделяется некоторая полоса частот.
Канал передачи данных – средства двустороннего обмена данными, включающие АКД и линию передачи данных.
По природе физической среды передачи данных (ПД) различают каналы передачи данных на оптических линиях связи, проводных (медных) линиях связи и беспроводные. В свою очередь, медные каналы могут быть представлены коаксиальными кабелями и витыми парами, а беспроводные – радио- и инфракрасными каналами.
В зависимости от способа представления информации электрическими сигналами различают аналоговые и цифровые каналы передачи данных. В аналоговых каналах для согласования параметров среды и сигналов применяют амплитудную, частотную, фазовую и квадратурно-амплитудную модуляции. В цифровых каналах для передачи данных используют самосинхронизирующиеся коды, а для передачи аналоговых сигналов – кодово-импульсную модуляцию.
Первые сети ПД были аналоговыми, поскольку использовали распространенные телефонные технологии. Но в дальнейшем устойчиво растет доля цифровых коммуникаций (это каналы типа Е1/Т1, ISDN, сети Frame Relay, выделенные цифровые линии и др.).
В зависимости от направления передачи различают каналы симплексные (односторонняя передача), дуплексные (возможность одновременной передачи в обоих направлениях) и полудуплексные (возможность попеременной передачи в обоих направлениях).
В зависимости от числа каналов связи в аппаратуре ПД различают одно- и многоканальные средства ПД. В локальных вычислительных сетях и в цифровых каналах передачи данных обычно используют временное мультиплексирование, в аналоговых каналах – частотное разделение.
Если канал ПД монопольно используется одной организацией, то такой канал называют выделенным, в противном случае канал является разделяемым или виртуальным (общего пользования).
Аналоговые каналы передачи данных. Наиболее распространенным типом аналоговых каналов являются телефонные каналы общего пользования (каналы тональной частоты). В каналах тональной частоты полоса пропускания составляет 0,3...3,4 кГц, что соответствует спектру человеческой речи.
Для передачи дискретной информации по каналам тональной частоты необходимы устройства преобразования сигналов, согласующие характеристики дискретных сигналов и аналоговых линий. Кроме того, в случае непосредственной передачи двоичных сигналов по телефонному каналу с полосой пропускания 0,3...3,4 кГц скорость передачи не превысит 3 кбит/с. Действительно, пусть на передачу одного бита требуются два перепада напряжения, а длительность одного перепада ТВ = = (3...4)/(6,28 FB), где FB – верхняя частота полосы пропускания. Тогда скорость передачи есть В < 1/(2 ТВ).
Согласование параметров сигналов и среды при использовании аналоговых каналов осуществляется с помощью воплощения сигнала, выражающего передаваемое сообщение, в некотором процессе, называемом переносчиком и приспособленном к реализации в данной среде. Переносчик в системах связи представлен электромагнитными колебаниями U некоторой частоты, называемой несущей частотой:
U = Umsin (w t + у),
где Um – амплитуда; w – частота; у – фаза колебаний несущей.
Изменение параметров несущей (переносчика) по закону передаваемого сообщения называется модуляцией. Если это изменение относится к амплитуде Um, то модуляцию называют амплитудной (AM), если к частоте w – частотной (ЧМ), и если к фазе у – фазовой (ФМ). При приеме сообщения предусматривается обратная процедура извлечения полезного сигнала из переносчика, называемая демодуляцией. Модуляция и демодуляция выполняются в устройстве, называемом модемом.
Модем – устройство преобразования кодов и представляющих их электрических сигналов при взаимодействии аппаратуры окончания канала данных и линий связи. Слово «модем» образовано из частей слов «модуляция» и «демодуляция», что подчеркивает способы согласования параметров сигналов и линий связи – сигнал, подаваемый в линию связи, модулируется, а при приеме данных из линии сигналы подвергаются обратному преобразованию (рис. 3.24).
Рис. 3.24. Связь узлов сети с помощью модемов: М – модем; Т – терминал; КК – кластерный контроллер
Модем выполняет функции аппаратуры окончания канала данных. В качестве оконечного оборудования обычно выступает компьютер, в котором имеется приемопередатчик – микросхема DART (Universal Asynchronous Receiver/Transmitter). Приемопередатчик подключается к модему через один из последовательных портов компьютера и последовательный интерфейс RS-232C, в котором обеспечивается скорость не ниже 9,6 кбит/с на расстоянии до 15 м.
Более высокая скорость (до 1000 кбит/с на расстояниях до 100 м) обеспечивается интерфейсом RS-422, в котором используются две витые пары проводов с согласующими сопротивлениями на концах, образующие сбалансированную линию.
Цифровые каналы передачи данных. Различают несколько технологий связи, основанных на цифровых каналах передачи данных.
Связь ООД с АКД (например, компьютера с модемом или низкоскоростными периферийными устройствами) чаще всего осуществляется при помощи последовательных интерфейсов RS-232C, RS-422 (их аналогами в системе стандартов ITU являются V.24, V.11), а связь ООД с цифровыми сетями передачи данных – при помощи интерфейсов Х.21, Х.35, G.703*.
В качестве магистральных цифровых каналов передачи данных в США и Японии используют стандартную многоканальную систему Т1 (иначе DS-1). Она включает 24 цифровых канала, называемых DS-0 (Digital Signal-0). И каждом канале применена кодово-импульсная модуляция с частотой следования отсчетов 8 кГц и с квантованием сигналов по 256 уровням, что обеспечивает скорость передачи 64 кбит/с на один канал, или 1554 кбит/с на аппаратуру Т1. В Европе более распространена аппаратура Е1 с 32 каналами по 64 кбит/с, т. е. с общей скоростью 2048 кбит/с. Применяются также каналы ТЗ (или DS-3), состоящие из 28 каналов Т1 (45 Мбит/с) и Е3 (34 Мбит/с) преимущественно в частных высокоскоростных сетях.
В Т1 использовано временное мультиплексирование. Все 24 канала передают в мультиплексор по байту, образуя 192-битный кадр с добавлением одного бита синхронизации. Двадцать четыре кадра составляют суперкадр. В суперкадре имеются контрольный код и синхронизирующая комбинация. Сборку информации из нескольких линий и ее размещение в магистрали Т1 осуществляет мультиплексор. Канал DS-0 (один слот) соответствует одной из входных линий, т. е. реализуется коммутация каналов. Некоторые мультиплексоры позволяют маршрутизировать потоки данных, направляя их в другие мультиплексоры, связанные с другими каналами Т1, хотя собственно каналы Т1 называют некоммутируемыми.
При обычном мультиплексировании каждому соединению выделяется определенный слот (например, канал DS-0). Если же этот слот не используется из-за недогрузки канала по этому соединению, но по другим соединениям трафик значительный, то эффективность невысокая. Загружать свободные слоты, или, другими словами, динамически перераспределять слоты, можно, используя так называемые статистические мультиплексоры на основе микропроцессоров. В этом случае временно весь канал DS-1 либо его часть отдается одному соединению с указанием адреса назначения.
В современных сетях важное значение имеет передача как данных, представляемых дискретными сигналами, так и аналоговой информации (например, голос и видеоизображения первоначально имеют аналоговую форму). Поэтому для многих применений современные сети должны быть сетями с интеграцией услуг. Наиболее перспективными сетями с интеграцией услуг являются сети с цифровыми каналами передачи данных, например сети ISDN.
- Введение
- 1. Основы железнодорожной автоматики, телемеханики и связи
- 1.1.2. Классификация телемеханических систем
- 1.1.3. Принцип построения систем телеуправления и телесигнализации
- 1.1.4. Принцип построения систем телеизмерения
- 1.2. Виды, структура и назначение железнодорожной связи
- 1.2.1. Основы единой автоматизированной системы связи
- 1.2.2. Классификация систем железнодорожной связи
- 1.2.1. Основы единой автоматизированной системы связи
- 1.2.2. Классификация систем железнодорожной связи
- Классификация систем связи
- 2. Основы железнодорожной автоматики и телемеханики
- 2.1.2. Классификация светофоров
- 2.1.3. Сигнализация станционных светофоров
- 2.1.4. Изоляция путей на станции
- 2.2. Рельсовые цепи
- 2.2.2. Основные режимы работы рельсовых цепей
- 2.2.3. Классификация рельсовых цепей
- 2.2.4. Понятие о первичных и вторичных параметрах рельсовой линии
- 2.2.5. Особенности работы рельсовых цепей в зависимости от места применения
- 2.2.6. Рельсовые цепи тональной частоты
- 2.3. Системы путевой блокировки
- 2.3.1 Полуавтоматическая блокировка
- 2.3.2. Принцип построения двузначной автоблокировки постоянного тока
- 2.3.3. Назначение и принцип действия числовой кодовой автоблокировки
- 2.3.1 Полуавтоматическая блокировка
- Принцип отправления и прибытия поездов при паб
- 2.3.2. Принцип построения двузначной автоблокировки постоянного тока
- 2.3.3 Назначение и принцип действия числовой кодовой автоблокировки
- Взаимосвязь показаний проходного светофора и кода, посылаемого в следующую рельсовую цепь.
- 2.4. Автоматическая локомотивная сигнализация и автоведение поездов
- 2.4.2. Автоматическая локомотивная сигнализация непрерывного типа
- 2.4.3. Система автоматического управления торможением
- 2.5. Диспетчерский контроль и техническая диагностика, ограждающие устройства на железнодорожном транспорте
- 2.5.2. Системы контроля подвижного состава
- 2.5.3. Ограждающие устройства
- 2.6. Электрическая централизация стрелок и сигналов
- 2.6.2. Классификация систем электрической централизации
- 2.6.3. Аппараты управления и контроля
- 2.6.4. Требования птэ к устройствам эц
- 2.7. Кодовые системы централизации
- 2.7.2. Принцип диспетчерского управления движением поездов на железнодорожном транспорте
- 2.7.3. Системы диспетчерской централизации «Нева» и «Луч»
- 2.7.4. Компьютерные системы диспетчерской централизации
- 2.7.5. Системы станционной кодовой централизации
- 2.8. Механизация и автоматизация работы сортировочных горок
- Классификация сортировочных горок по мощности
- 2.8.2. Устройства горочной автоматики
- 2.8.3. Горочные системы автоматизации технологических процессов
- 3. Устройства связи на железнодорожном транспорте
- 2. Принципы телефонной передачи. Устройство угольного микрофона и электромагнитного телефона
- 2.1. Принципы телефонной передачи
- 2.2. Устройство угольного микрофона и электромагнитного телефона
- Контрольные вопросы
- 3. Приборы и схемы телефонных аппаратов. Классификация телефонных станций
- 3.1. Классификация телефонных аппаратов
- 3.2. Основные приборы телефонных аппаратов
- 3.2.1. Звонок
- 3.2.2. Рычажный переключатель
- 3.2.3. Микротелефонная трубка
- 3.2.4. Номеронабиратель
- 3.2.5. Разговорная схема
- 3.3. Классификация телефонных станций
- 3) По методу управления процессом соединения:
- Контрольные вопросы
- 4. Принципы построения автоматических телефонных станций
- 4.1. Автоматические телефонные станции декадно-шаговой системы
- 4.2. Автоматические телефонные станции координатной системы
- 4.3. Квазиэлектронные автоматические телефонные станции
- 4.4. Электронные (цифровые) автоматические телефонные станции
- 4.5. Понятие о телефонной нагрузке
- 4.6. Междугородняя телефонная связь
- Контрольные вопросы
- 3.1. Телефонная связь
- 3.2. Оперативно-технологическая связь
- 3.2.1. Назначение и принципы организации
- 3.2.2. Перспективы развития отс
- 3.2.1. Назначение и принципы организации
- Значения вызывных частот
- 3.2.2. Перспективы развития отс
- 3.3. Многоканальная связь
- 3.3.1. Системы с частотным разделением каналов
- Группообразование в системах передачи с чрк
- 3.3.2. Системы с временным разделением каналов
- 3.3.3. Классификация линий связи
- 3.4. Передача дискретной информации. Цифровые сети с интеграцией услуг
- 3.4.1. Типы телекоммуникационных сетей
- 3.4.2. Каналы передачи данных
- 3.4.3. Цифровые сети с интеграцией услуг
- 3.5. Радиосвязь и телевидение
- 3.5.1. Принципы организации систем радиосвязи
- 3.5.2. Системы поездной радиосвязи
- 3.5.3. Система поездной радиосвязи на базе аппаратуры «Транспорт»
- 3.5.4. Система станционной радиосвязи
- 3.5.5 Железнодорожные телевизионные системы
- Библиографический Список