2.2. Устройство угольного микрофона и электромагнитного телефона
Для высокого качества телефонной передачи необходимо, чтобы электроакустические преобразователи не вносили нелинейных искажений в разговорный тракт, обладали максимально возможными для данного типа преобразователей чувствительностью и коэффициентом полезного действия и были бы надежными в работе. Кроме этого, преобразователи должны иметь невысокую стоимость и быть экономичными в эксплуатации.
Для оценки качества работы микрофона и телефона в отношении преобразования одного вида энергии в другой вводится понятие чувствительности преобразователя.
Чувствительностью микрофона Sм называется отношение электродвижущей силы Ем, В, развиваемой микрофоном, к звуковому давлению рм,Па, действующему на его мембрану (рис. 2.2),
Sм = Ем / рм.
Чувствительностью телефона называется отношение звукового давления рт, Па, развиваемого телефоном, к напряжению Uт, В, на зажимах телефона
Sт = рт / Uт .
Чувствительность преобразователей в значительной степени зависит от частоты колебаний.
Электроакустические преобразователи можно разделить на две основные группы – обратимые и необратимые. Обратимые преобразователи обладают свойством преобразования как акустической энергии в электрическую, так и наоборот – электрической энергии в звуковую. Необратимые преобразователи этим свойством не обладают.
Угольный микрофон (рис. 2.3) является преобразователем необратимого типа. Действие угольного микрофона основано на свойстве угольного порошка изменять свое сопротивление в зависимости от изменения его плотности.
Звуковые волны воздействуют на мембрану М и заставляют ее колебаться. Под влиянием колебаний мембраны угольный порошок сжимается, а сопротивление его изменяется. Вследствие этого в цепи нагрузки Rн будет проходить ток, изменяющийся в соответствии с изменением звукового давления, действующего на мембрану.
Большим достоинством угольного микрофона по сравнению с другими типами микрофонов является высокое значение средней чувствительности, достигающее 0,7 В/Па.
это сделало его наиболее распространенным в телефонных аппаратах местной связи. Однако угольные микрофоны имеют большую неравномерность частотной характеристики (до 30 дБ) и значительный коэффициент нелинейных искажений (до 20 %), поэтому они не применяются в качестве студийных микрофонов при организации таких видов связи, как связь совещаний, диспетчерская поездная, дорожная распорядительная, оповестительная и др., где используются главным образом электродинамические микрофоны. Микрофоны изготовляют с разным сопротивлением угольного порошка: НО – низкоомные (3080 Ом); СО – среднеомные (не более 120 Ом); ВО – высокоомные (не более 200 Ом). При малых токах питания (до 25 мА) применяют ВО микрофоны; при токах питания от 25 до 60 мА – СО, а при токе питания свыше 60 мА – НО. Ток питания микрофона ограничен значением тока спекания угольного порошка, при котором гранулы угольного порошка спекаются (80100 мА), и микрофон приходит в негодность. Капсюльные угольные микрофоны обозначаются МК-10, МК-16, МК-16Н. Конструктивно они выполнены в виде неразборных капсюлей.
Кроме угольных микрофонов, в телефонных аппаратах используют электромагнитные микрофоны (обозначаются ДЭМК-7Т, ДЭМШ и ДЭМШ-1, причем два последних применяются в аппаратуре громкоговорящей связи). Распространенными являются электродинамические микрофоны типов МД-44, МД-53, МД-59, которые предназначены для передач из студии.
Электромагнитный телефон (рис. 2.4) состоит из постоянного магнита, полюсных надставок, на которых размещены обмотки и мембрана из ферромагнитного материала. Под действием постоянного магнита, создающего магнитный поток Ф0, мембрана всегда находится в изогнутом состоянии.
При прохождении переменного тока через обмотку создается переменный магнитный поток Ф~, взаимодействующий с потоком постоянного магнита Ф0 и вызывающий колебания мембраны. При этом мембрана колеблется с частотой тока, проходящего по обмоткам телефона, создавая звуковые волны. Для неискаженной передачи необходимо, чтобы телефон имел достаточно сильный постоянный магнит. Чтобы мембрана колебалась пропорционально изменению намагничивающей силы магнитной системы, рабочую точку перемагничивания мембраны выбирают в средней части прямолинейного участка кривой намагничивания. Поэтому обмотки телефона наматывают не прямо на полюсы постоянных магнитов, обладающих высокой степенью намагничивания, а на полюсные надставки, изготовленные из мягкой стали. Телефоны подобно микрофонам конструктивно выполняют в виде телефонных капсюлей ТА-4, ТК-67 и др.
На железнодорожном транспорте для озвучивания открытых площадей, перронов, вокзалов, сортировочных горок используют громкоговорители (рупорные, радиальные), в которых реализован изложенный выше принцип работы.
- Введение
- 1. Основы железнодорожной автоматики, телемеханики и связи
- 1.1.2. Классификация телемеханических систем
- 1.1.3. Принцип построения систем телеуправления и телесигнализации
- 1.1.4. Принцип построения систем телеизмерения
- 1.2. Виды, структура и назначение железнодорожной связи
- 1.2.1. Основы единой автоматизированной системы связи
- 1.2.2. Классификация систем железнодорожной связи
- 1.2.1. Основы единой автоматизированной системы связи
- 1.2.2. Классификация систем железнодорожной связи
- Классификация систем связи
- 2. Основы железнодорожной автоматики и телемеханики
- 2.1.2. Классификация светофоров
- 2.1.3. Сигнализация станционных светофоров
- 2.1.4. Изоляция путей на станции
- 2.2. Рельсовые цепи
- 2.2.2. Основные режимы работы рельсовых цепей
- 2.2.3. Классификация рельсовых цепей
- 2.2.4. Понятие о первичных и вторичных параметрах рельсовой линии
- 2.2.5. Особенности работы рельсовых цепей в зависимости от места применения
- 2.2.6. Рельсовые цепи тональной частоты
- 2.3. Системы путевой блокировки
- 2.3.1 Полуавтоматическая блокировка
- 2.3.2. Принцип построения двузначной автоблокировки постоянного тока
- 2.3.3. Назначение и принцип действия числовой кодовой автоблокировки
- 2.3.1 Полуавтоматическая блокировка
- Принцип отправления и прибытия поездов при паб
- 2.3.2. Принцип построения двузначной автоблокировки постоянного тока
- 2.3.3 Назначение и принцип действия числовой кодовой автоблокировки
- Взаимосвязь показаний проходного светофора и кода, посылаемого в следующую рельсовую цепь.
- 2.4. Автоматическая локомотивная сигнализация и автоведение поездов
- 2.4.2. Автоматическая локомотивная сигнализация непрерывного типа
- 2.4.3. Система автоматического управления торможением
- 2.5. Диспетчерский контроль и техническая диагностика, ограждающие устройства на железнодорожном транспорте
- 2.5.2. Системы контроля подвижного состава
- 2.5.3. Ограждающие устройства
- 2.6. Электрическая централизация стрелок и сигналов
- 2.6.2. Классификация систем электрической централизации
- 2.6.3. Аппараты управления и контроля
- 2.6.4. Требования птэ к устройствам эц
- 2.7. Кодовые системы централизации
- 2.7.2. Принцип диспетчерского управления движением поездов на железнодорожном транспорте
- 2.7.3. Системы диспетчерской централизации «Нева» и «Луч»
- 2.7.4. Компьютерные системы диспетчерской централизации
- 2.7.5. Системы станционной кодовой централизации
- 2.8. Механизация и автоматизация работы сортировочных горок
- Классификация сортировочных горок по мощности
- 2.8.2. Устройства горочной автоматики
- 2.8.3. Горочные системы автоматизации технологических процессов
- 3. Устройства связи на железнодорожном транспорте
- 2. Принципы телефонной передачи. Устройство угольного микрофона и электромагнитного телефона
- 2.1. Принципы телефонной передачи
- 2.2. Устройство угольного микрофона и электромагнитного телефона
- Контрольные вопросы
- 3. Приборы и схемы телефонных аппаратов. Классификация телефонных станций
- 3.1. Классификация телефонных аппаратов
- 3.2. Основные приборы телефонных аппаратов
- 3.2.1. Звонок
- 3.2.2. Рычажный переключатель
- 3.2.3. Микротелефонная трубка
- 3.2.4. Номеронабиратель
- 3.2.5. Разговорная схема
- 3.3. Классификация телефонных станций
- 3) По методу управления процессом соединения:
- Контрольные вопросы
- 4. Принципы построения автоматических телефонных станций
- 4.1. Автоматические телефонные станции декадно-шаговой системы
- 4.2. Автоматические телефонные станции координатной системы
- 4.3. Квазиэлектронные автоматические телефонные станции
- 4.4. Электронные (цифровые) автоматические телефонные станции
- 4.5. Понятие о телефонной нагрузке
- 4.6. Междугородняя телефонная связь
- Контрольные вопросы
- 3.1. Телефонная связь
- 3.2. Оперативно-технологическая связь
- 3.2.1. Назначение и принципы организации
- 3.2.2. Перспективы развития отс
- 3.2.1. Назначение и принципы организации
- Значения вызывных частот
- 3.2.2. Перспективы развития отс
- 3.3. Многоканальная связь
- 3.3.1. Системы с частотным разделением каналов
- Группообразование в системах передачи с чрк
- 3.3.2. Системы с временным разделением каналов
- 3.3.3. Классификация линий связи
- 3.4. Передача дискретной информации. Цифровые сети с интеграцией услуг
- 3.4.1. Типы телекоммуникационных сетей
- 3.4.2. Каналы передачи данных
- 3.4.3. Цифровые сети с интеграцией услуг
- 3.5. Радиосвязь и телевидение
- 3.5.1. Принципы организации систем радиосвязи
- 3.5.2. Системы поездной радиосвязи
- 3.5.3. Система поездной радиосвязи на базе аппаратуры «Транспорт»
- 3.5.4. Система станционной радиосвязи
- 3.5.5 Железнодорожные телевизионные системы
- Библиографический Список