Курсовые системы
Ни один из вышерассмотренных курсовых приборов вследствие присущих им недостатков не в состоянии обеспечить то измерение курса в любых условиях полета. Поэтому для повышения мобильности и точности его определения разработаны и нашли практическое применение единые курсовые системы. При создании таких систем удалось в какой-то мере скомпенсировать недостатки достоинствами различных по принципу действия измерителей курса благодаря их рациональному синтезу.
Современная курсовая система представляет собой комплекс гироскопического, магнитного и астрономического датчиков, которые позволяют с достаточной точностью измерять и выдавать сигналы курса на указатели и другие устройства для решения пилотажных и навигационных задач.
Использование одних и же указателей и простота перевода системы из одного режима в другой — еще одно преимущество комплексной системы.
В зависимости от географического района полета, времени суток, метеорологических условий, уровня естественных искусственно созданных помех курсовая система типа ТКС может работать в режиме гирополукомпаса (ГПК) и в режимах магнитной (МК) или астрономической (АК) коррекции. Для работы на каждый из них система переключается с пульта управления переключателем.
Датчиком системы является гироагрегат ГА. Его чувствитвительным элементом служит астатический гироскоп с тремя степенями свободы. Для удержания главной оси ротора в горизонтальном положении используется система горизонтальной коррекции, которая для уменьшения послевиражных погрешностей отключается гироскопическим выключателем коррекции ВК-53РБ.
С целью исключения креновых погрешностей гироскоп установлен в дополнительной раме. Ее вертикальное положение контролируется центральной гировертикалью ЦГВ, и в случае ухода рамы из вертикали по сигналам рассогласования у она восстанавливается следящей системой в исходное положение.
Поскольку гироскопу свойственен «кажущийся» уход его который зависит от широты φ местности, для исключения этого явления применена система азимутальной коррекции. Управление этой системой осуществляется с пульта управления рукояткой задатчика широты.
Таким образом, независимо от положения самолета и координат местности главная ось гироагрегата оказывается стабилизированной в горизонтальной плоскости и удерживается в азимуте.
В режиме ГПК сигнал курса посредством двухканальной сельсинной передачи с ГА передается на центральный указатель штурмана УШ, где трансформируется в поворот его шкалы относительно неподвижного индекса. В свою очередь этот указатель выдает сигналы курса указателям УК. Наличие в нем сельсинов-приемников позволяет измерять курсовые углы радиостанций по повороту стрелок относительно шкалы. Введение магнитного склонения Δм осуществляется кремальерой.
Для уменьшения накопления ошибки в измерении курса с течением времени необходимо периодически осуществлять коррекцию от магнитного или астрономического компаса.
В режиме МК датчиком компасного курса служит индукционный датчик ИД. Сигнал, пропорциональный этому курсу, поступает в коррекционный механизм КМ, где компенсируется девиация ΔК и вводится условное магнитное склонение ΔМУ. Откорректированный сигнал, пропорциональный магнитному курсу с помощью сельсинной передачи, подается на гироагрегат. С его сельсинов осредненное значение гиромагнитного курса поступает на указатели.
В режиме астрономической коррекции уход гироскопа корректируется от астрокомпаса ДАК-ДБ.
Особенность магнитной и астрономической коррекции гороагрегата заключается в том, что уход оси гироскопа в aзимуте устраняется не силовым воздействием на гироскоп, а доворотом статора сельсина-датчика относительно ротора на такой же yгол. В результате этого гироагрегат выполняет функцию осреднителя погрешностей магнитного и астрономического компасов.
При значительном рассогласовании между гироагрегатом индукционным датчиком или астрокомпасом используется кнопка согласования КС на пульте управления, нажатием на нее обеспечивается уменьшение передаточного отношения редукторов отрабатывающих двигателей следящей системы и как результат увеличение скорости согласования системы.
Резервирование системы благодаря запасному гироагрегату позволяет повысить ее надежность.
- Назначение, задачи и состав приборного оборудования.
- Приборы контроля авиационных двигателей
- Авиационные манометры
- Механические манометры
- Электромеханические дистанционные манометры пружинного типа
- Электромеханические дистанционные манометры силового типа
- Авиационные термометры
- Термометр сопротивления унифицированный туэ-48
- Электрический моторный индикатор эми-зртис
- Термометр цилиндров термоэлектрический тцт-13
- Термометр газов тг-2а
- Сдвоенная измерительная аппаратура 2иа-7а
- Авиационные измерители частоты вращения
- Магнитоиндукционные тахометры
- Магнитоиндукционный тахометр типа итэ-1т
- Магнитоиндукционный тахометр типа итэ-2т
- Тахометрическая сигнальная аппаратура
- Измерение количества топлива и масла
- Электроемкостные топливомеры
- Топливомер типа суит4-1т
- Система измерения масла сим2-1т
- Измерение расхода топлива
- Турбинный преобразователь расхода топлива
- Система измерения и расхода топлива сирт1-2т
- Измерители вибрации
- Аппаратура контроля вибрации ив-154
- Пилотажно-навигационные приборы и устройства
- Измерители высоты полета Общие сведения о высотах, атмосфере, гипсометрической таблице и эшелонировании.
- Погрешности барометрических высотомеров
- Измерители скоростей полета
- Теория аэродинамического метода измерения скорости полета
- Указатель числа м.
- Погрешности указателей скорости
- Датчики истинной воздушной скорости.
- Методы измерения вертикальной скорости
- Приборы для измерения вертикальной скорости
- Погрешности вариометров
- Измерители путевой скорости и угла сноса.
- Курсовые приборы и системы
- Магнитные компасы.
- Истинные направления.
- Понятие о гироскопе
- Элементы теории гироскопов
- Кориолисово ускорение
- Гироскопический момент
- Некоторые сведения о гироскопе
- Основные свойства гироскопа.
- Указатель поворота эуп-53
- Датчик угловой скорости (дус)
- Выключатель коррекции вк-53рб
- Гироскопические приборы для определения курса. Использование гироскопа с двумя степенями свободы в качестве компаса.
- Использование гироскопа с тремя степенями свободы в качестве компаса
- Гироскоп с тремя степенями свободы как указатель ортодромического курса
- Режим гирополукомпаса (гпк)
- Навигационные индикаторы общие принципы построения навигационных индикаторов
- Астрономические компасы.
- Курсовые системы
- Режим гирополукомпаса (гпк)
- Инерциальные навигационные системы
- Приемники и магистрали воздушных давлений на самолете
- Системы воздушных сигналов (свс)
- Принципы построения автоматизированных бортовых систем управления
- Основные принципы построения автоматизированных бортовых систем управления
- Среда и нагрузки, действующие на самолет
- Самолет как объект регулирования. Системы координат
- Принципы построения и действия автопилота
- Принцип действия автопилота при управлении самолетом по курсу
- Принцип действия автопилота при управлении самолетом по тангажу
- Принцип действия автопилота при стабилизации высоты полета самолета
- Бортовые системы управления полетом самолета
- Высотное оборудование самолетов влияние высотных полетов на организм человека
- Методы и средства жизнеобеспечения при выполнении высотного полета
- Основы прикладной теории гироскопа и элементы гироскопических приборов и систем понятие о гироскопе
- Элементы теории гироскопов
- Кариолисово ускорение и гироскопический момент
- Гироскопический момент
- Гироскопы с тремя степенями свободы
- Указатель поворота эуп-53
- Датчик угловой скорости (дус)
- Выключатель коррекции вк-53рб
- Бортовой навигационный комплекс бнк-154м