3.3.2.Билинейное илиW-преобразование
Билинейное преобразование позволяет в ряде случаев применить для анализа системы с прерывистым режимом работы методы, разработанные ранее для исследования аналоговых систем. В частности, билинейное преобразование позволяет отобразить окружность единичного радиуса Z-плоскости на мнимую ось комплексной плоскости переменнойw (W-плоскости, рис. 3.3) и использовать критерий Найквиста и все связанные с ним методы анализа систем. Используются подстановки в прямом и обратном билинейных преобразованиях, соответственно
. (3.37)
Действительно, пусть комплексные переменные zиw представляются в виде.
Подставляя переменную z в выражение дляw(см. подстановки (3.37)), после некоторых преобразований получим формулы для вещественных характеристик переменнойw
, (3.38)
позволяющие сформулировать условия устойчивости системы, используя для её описания переменную w.
Как было отмечено выше, система находится на границе устойчивости, еслиравны единице модулиодного вещественного корня или пары комплексно-сопряженных корней при устойчивых всех остальных корнях. Но тогда равен нулю числитель в формуле для α в выражении (3.38), т.е.равна нулю вещественная частькомплексной переменнойw (α = 0) и данный корень находится на границе устойчивости. Это может служить доказательством, что на комплекснойW-плоскостидля корней характеристического уравнения системы с прерывистым режимом работы границейустойчивости является мнимая ось.
Система устойчива, есливсе корниwjхарактеристического уравненияимеют отрицательные вещественные части(все корни находятся в левой полуплоскости наW-плоскости на рис. 3.3).
.
Система неустойчива, еслихотя бы один из корней имеет положительнуювещественную часть(корень находится в правой полуплоскости наW-плоскости).
Доказывается, что для анализа устойчивости систем, описываемых W-передаточными функциями,может использоваться критерииустойчивости Найквиста.
Итак, пусть система, заданная передаточной функцией W(w) в разомкнутом состоянии, устойчива. Для того чтобы в соответствии с критерием Найквиста эта система в замкнутом состоянии была устойчивой, еёамплитудно-фазовая характеристика(АФХ) в разомкнутом состояниине должна охватывать точку (-1; 0)на комплекснойW-плоскости.
- Д.В. Астрецов, г.А. Самусевич радиоавтоматика Учебное пособие
- ВВедение
- 1. Общие сведения о следящих радиосистемах
- 1.1. Обобщенная функциональная и структурная схемы следящей радиосистемы. Основные характеристики звеньев
- 1.2. Системы частотной автоподстройки
- 1.3. Модели систем с прерывистым режимом работы
- 1.3.1. Дискретные системы
- Примеры дискретных систем
- 1.3.2. Цифровые системы
- Достоинства цифровых систем
- Недостатки цифровых систем
- Математические методы описания дискретных и цифровых систем
- 1.4.1. Дискретные системы
- 1.4.2. Цифроаналоговые системы
- 2. Линейные непрерывные системы
- 2.1. Уравнение состояния системы
- Контрольные вопросы
- 2.2. Методы линеаризации
- 2.2.1. Линеаризация статической нелинейности
- 2.2.2. Линеаризация динамической нелинейности Линеаризация относительно положения равновесия
- Линеаризация относительно опорного динамического режима
- Контрольные вопросы
- 2.3. Математические методы описания (характеристики) систем автоматического управления
- 2.3.1. Дифференциальные уравнения n-го порядка
- 2.3.2. Передаточные функции
- 2.3.3. Частотные характеристики Комплексный коэффициент передачи
- Амплитудно-фазовая характеристика (афх)
- Логарифмические частотные характеристики
- 2.3.4. Временные характеристики
- Методы определения временных характеристик Классический методоснован на непосредственном интегрировании дифференциальных уравнений, описывающих систему.
- Методы, основанные на использовании преобразования Лапласа
- Моделирование сау
- Контрольные вопросы
- 2.4. Типовые звенья
- 2.4.1. Идеальное усилительное звено
- 2.4.2. Идеальное интегрирующее звено
- Комплексный коэффициент передачи интегрирующего звена
- 2.4.3. Инерционное звено
- Комплексный коэффициент передачи
- Логарифмические частотные характеристики (лах)
- Временные характеристики инерционного звена
- Переходная характеристика.
- 2.4.5.Сравнение свойств интегрирующего и инерционного звеньев
- 2.4.6.Колебательное звено
- Характеристическое уравнение колебательного звена и его корни
- Импульсная переходная характеристика
- Контрольные вопросы
- 2.5. Структурные преобразования
- 2.5.1.Стандартные соединения. Универсальный метод структурных преобразований
- Параллельное соединение элементов
- Последовательное соединение элементов
- Комплексный коэффициент передачи последовательного соединения
- Встречно-параллельное соединение элементов
- 2.5.2.Система с единичной отрицательной обратной
- 2.5.3. Системы с двумя входными воздействиями
- Передаточные функции по регулярному входному воздействию
- Передаточные функции по действию случайной помехи
- Контрольные вопросы
- 2.6. Устойчивость линейных непрерывных систем
- 2.6.1. Определение устойчивости
- 2.6.2. Анализ устойчивости системы по расположению корней характеристического уравнения
- 2.6.3.Критерий Михайлова
- 2.6.4. Критерий Найквиста
- Общий случай критерия Найквиста
- Устойчивые в разомкнутом состоянии системы
- Контрольные вопросы
- 2.7. Показатели качества линейных непрерывных систем
- 2.7.1. Показатели динамики процесса, определяемые по виду переходной характеристики
- 2.7.2. Показатели динамики процесса, определяемые по
- Показатели качества, определяемые по виду амплитудно-частотной характеристики системы в замкнутом состоянии
- Показатели качества, определяемые по виду логарифмических частотных характеристик
- Показатели качества, определяемые по виду амплитудно-фазовой характеристики системы в разомкнутом состоянии
- Анализ афх позволяет сделать следующие выводы:
- 2.7.3. Показатели точности в установившемся режиме
- Передаточные функции ошибки системы
- Ошибки по регулярному задающему воздействию х(t)
- Статические системы
- Астатическая система первого порядка
- Астатическая система второго порядка
- Метод коэффициентов ошибок
- Ошибки при гармоническом входном воздействии
- 2.7.4. Ошибки, вызванные действием случайной помехи f(t)
- Контрольные вопросы
- 2.8. Методы улучшения систем автоматического управления
- 2.8.1. Методы повышения точности по регулярному входному воздействию
- Методы улучшения динамических характеристик Параллельные устройства коррекции
- Последовательные корректирующие устройства
- Техническое задание на проектирование системы
- Построение запретных зон на лах по колебательности и по точности
- Построение запретных зон по колебательности
- Построение запретных зон по точности
- Применение последовательного корректирующего фильтра
- Контрольные вопросы
- 3. Системы с прерывистым режимом работы
- 3.1. Особенности математического описания дискретных процессов
- 3.1.1.Дельта-функция и её свойства
- 3.1.2. Дискретное преобразование Лапласа
- Преобразование Лапласа часто используемых дискретных функций
- Свойства z-преобразования
- 3.1.3. Конечные разности
- Контрольные вопросы
- Математические методы описания систем с прерывистым режимом работы
- 3.2.1.Уравнения в обратных конечных разностях
- 3.2.2.Дискретная передаточная функция
- 3.2.3. Методы восстановления оригинала
- Использование уравнений в конечных разностях
- Использование формул разложения
- Контрольные вопросы
- Анализ систем с прерывистым режимом работы
- 3.3.1. Устойчивость систем с прерывистым режимом работы
- 3.3.2.Билинейное илиW-преобразование
- Частотные характеристики
- 3.3.4. Регулярные ошибки в установившемся режиме работы системы
- 3.3.5. Пример анализа дискретной системы
- Анализ устойчивости системы по расположению корней характеристического уравнения на z-плоскости
- Характеристического уравнения на w-плоскости
- Частотные характеристики
- Логарифмические характеристики неустойчивого форсирующего звена
- Логарифмические частотные характеристики системы в разомкнутом состоянии
- Ошибки в установившемся режиме работы системы
- 3.4. Коррекция цифроаналоговых систем с применением последовательного фильтра
- 3.4.1.Последовательный корректирующий фильтр
- 3.4.2. Техническое задание на проектирование системы
- 3.4.3.Построение запретных зон по колебательности и точности
- 3.4.4. Пример коррекции цифроаналоговой системы
- Технические условия на проектирование
- Анализ исходной системы
- Применение последовательного корректирующего фильтра с опережением по фазе
- Логарифмические частотные характеристики результирующей системы
- Переходные характеристики
- Контрольные вопросы
- Библиографический список
- Приложение
- Оглавление