2.8.1 Лінійні перетворення випадкових сигналів.
Хай здобуто перетворенням стаціонарного випадкового процесу оператором .
Загальна постановка задачі перетворення випадкового процесу лінійними операторами формулюється відносно законів розподілу імовірностей таким чином:
Задано закон розподілу імовірностей випадкового процесу , який поступає на вхід відомого оператора .
Необхідно визначити закон сумісного розподілу імовірностей випадкових процесів , .
Однак у практиці ТАУ задача у такій постановці зустрічається рідко із-за двоякості її розв’язку або прикладної доцільності. Для задоволення багатьох цілей теорії та практики автоматичного управління, постановку задачі управління випадковими процесами достатньо розглядати відносно математичних очікувань, кореляційних функцій або спектральних цільностей.
У такої постановки вона формулюється таким чином:
Задано лінійний оператор (комплексний коефіцієнт передачі або імпульсна передаточна функція , та характеристики , , випадкового стаціонарного процесу , який поступає на вхід оператора . Необхідно визначити характеристики , , вихідного процесу , а також характеристики , , , взаємозв`язку процесів та .
Хай процес можна визначити , де - відхилення процесу . Тоді процес з урахуванням лінійності
.
Якщо обробити ліву та праву частини цього рівняння оператором математичного очікування, то з урахуванням лінійності та здобудемо , тому що . (2.295)
Таким чином, математичне очікування вихідного процесу дорівнює результату обробки оператором . Цей результат справедливий і для нестаціонарного процесу .
Якщо розглядати відхилення процесу як , то
Тобто кореляційна функція вихідного процесу дорівнює кореляційній функції , яка обробляється послідовно операторами та .
Розглянемо лінійну стаціонарну систему з комплексною передаточною функцією або імпульсною перехідною функцією .
Рис. 2.210 До перетворення випадкового процесу лінійним оператором
Вихідний сигнал є випадковим сигналом з відомими характеристиками та , а треба визначити статистичні характеристики вихідного сигналу.
Відомо, що , а функція часу може бути визначена через та імпульсну перехідну функцію . Запишемо значення функції для перерізів та із відповідними аргументами та
Знайдемо взаємозв`язок цих значень випадкового процесу , для чого визначимо математичне очікування як
де .
Тому що то
Якщо помножити на , та взяти інтеграл у межах від до , то здобудемо спектральну щільність сигналу на вході. Щоб це можна було зробити, треба у вираз додати множники та , тобто
Кореляційна функція вихідного сигналу визначається як
Також справедливі співвідношення
(2.296)
Хай випадковий сигнал з , тобто білий шум, проходити через фільтр низьких частот з полосою проходження .
Тоді
Рис. 2.211 Фільтр низьких частот з полосою проходження .
2.8.2 Поняття про формуючий фільтр.
Вираз , який визначає зв'язок мiж спектральними щільностями сигналiв на входi та на виходi стацiонарної стiйкої лiнiйної системи у сталих режимах, дозволяє знайти частотну характеристику такої ланки, яка формує випадковий процес iз заданою спектральною щільнiстю з одиничного бiлого шуму , де - спектральна потужність білого шуму.
Хай спектральна щільність є дрiбно-рацiональною функцiєю, тобто . У силу того, що спектральна щільність є дiйсною та парною функцiєю, полiноми та мають парну степiнь та , тобто утримують тiльки парнi степенi . Тому їх коренями будуть комплексно-сполученi числа
та
Будемо вважати, що всi полiноми та не мають коренiв, якi розташованi на дiйсної осi. Таким чином має коренiв, якi розташованi у верхнiй півплощині площини , та коренiв - у нижнiй. Відповідно полiном має коренiв у верхнiй та коренiв у нижнiй півплощинах (Рис.2.212).
Рис. 2.212 Розподіл коренів у верхнiй та нижнiй півплощинах
Коренi також розташованi симетрично вiдносно мінливої та дiйсної осей площини . При виконаннi цих умов кожний iз полiномiв та можна представити як добуток двох других полiномiв, коренi одного з яких розташованi у верхнiй півплощині, а другого - у нижнiй півплощин
,
де та - коефiцiєнти при старших степенях змiнної у полiномах та . Якщо кожний з полiномiв помножити на множники та , то здобудемо
Отже, можна записати
де
,
а всi коренi полiномiв та розташованi у лiвiй півплощині .
Рис. 2.213 Розподіл коренів у лівої та правої півплощинах
Отже, можна визначити як
Таким чином, ланка яка формує випадковий процес iз заданою спектральною щільнiстю iз бiлого шуму визначається спiввiдношенням
(2.297)
Така ланка зветься формуючим фiльтром.
При цьому усi нулi та полюси передаточної функцiї формуючого фiльтру розташованi у лiвiй півплощині комплексної площини , тобто цей фiльтр при є фiзично реалiзуємим.
П 2.86
Знайти формуючий фiльтр для випадкових процесiв, якi мають спектральну щільність
1) 2)
1. Визначимо як
Отже, передаточна функцiя формуючого фiльтру буде
2. Для другого випадку
,
П 2.87
Визначити випадковий сигнал із заданими статистичними характеристиками
Формується “ білий шум “ та визначаються його статистичні характеристики
2. Визначається структура формуючого фільтру та статистичні характеристики вихідного сигналу
П 2.88
Визначити статистичні характеристики випадкового сигналу на виході формуючої ланки
1. Формується білий шум
Кореляційна функція
2. Модуль АЧХ замкнутої системи
Сигнал на виході
Кореляційні функції сигналів на вході та виході
Густина спектру вхідного та вихідного сигналів
7. Кореляційні функції, розраховані теоретично та експерементально
Кореляційні функції добре співпадають
- Тема 1.1. Загальні поняття та визначення …………………………………………………………… 19
- Тема 1.2. Класифікація систем автоматичного керування ………………………………………35
- Тема 1.3 Системний підхід до складання математичної моделі систем керування……. 66
- Тема 1.4 Детерміновані сигнали та їх характеристики …………………………………… 89
- Тема 2.1 Математичні моделі систем керування у вигляді диференційних рівнянь…….121
- Тема 2.2 Передаточної функції неперервних систем керування…………………………..144
- Тема 2.3 Стійкість процесів в неперервних системах керування………………………….. 164
- Тема 2.4 Математичні моделі систем керування у фазовому просторі………………… 181
- Тема 2.5 Математичні моделі систем керування за допомогою дискретних систем…… 220
- Тема 2.6 Частотні характеристики систем автоматичного керування………………… 261
- Тема 2.8 Задача визначення мінімуму середньо-квадратичної похибки…………………384
- Тема 3.1 Методи підвищення якості систем керування……………………………………418
- Тема 3.2 Типові лінійні закони керування………………………………………………….440
- Тема 3.3 Синтез неперервних систем керування……………………………………………469
- Тема 3.4 Методи синтезу дискретних систем керування ………………………………… 489
- Тема 3.5 Синтез систем керування при дії випадкових збуреннях…………………………..511
- Тема 3.6 Керованість та спостережливість систем керування…………………………….522
- Тема 3.7 Поняття про оптимальне та адаптивне керування…………………………………554
- Тема 1.1 Загальні поняття та визначення.
- Основні поняття теорії автоматичного керування.
- 1.1.2 Основні задачі теорії автоматичного керування.
- Основні поняття теорії автоматичного керування.
- 1.1.5 Підсистема керування (пристрій завдання, регулюючий пристрій, виконавчий пристрій, вимірювальні пристрої). Поняття типової ланки системи керування.
- 1.1.6 Система автоматичного керування та її основна задача
- Тема 1.2 Класифікація систем автоматичного керування.
- 1.2.1 Класифікація систем керування за принципом організації (за принципом дії).
- 1.2.2 Принцип розімкненого керування.
- 1.2.3 Лабораторна робота №1
- 1.2.4 Принцип замкненого керування.
- 1.2.5 Лабораторна робота №2
- 1.2.6 Класифікація систем автоматичного керування за ціллю керування.
- 1.2.7 Класифікація систем автоматичного керування за математичним описом оператора системи.
- 1.2.8 Лінійні системи автоматичного керування.
- 1.2.9 Нелінійні системи автоматичного керування.
- 1.2.10 Класифікація нелінійностей
- Наприклад: інерційна нелінійна ланка
- 1.2.11 Класифікація систем автоматичного керування за характером похибки у сталому режиму.
- 1.2.12 Класифікація за характером зміни оператора системи у часі.
- 1.2.13 Класифікація систем керування за кількістю каналів керування.
- 1.2.14 Класифікація систем керування за характером перетворення сигналів у часі.
- 1.2.15 Неперервні системи автоматичного керування.
- 1.2.16 Дискретні системи автоматичного керування.
- 1.2.17 Функції цифрового керування
- 1.2.18 Безпосереднє цифрове керування
- 1.2.19. Коректування впливу похибки перетворення аналогового сигналу у дискретний.
- Тема 1.3 Системний підхід до складання математичних моделі систем керування.
- 1.3.1 Перетворення Лапласа
- 1.3.2 Властивості перетворення Лапласа.
- 1.3.4 Перетворення Фур’є .
- 1.3.5 Властивості перетворення Фур’є
- 1.3.6 Дискретне перетворення Лапласа.
- Для вiдносного часу використовується символьна форма зображення
- 1.3.7 Основнi властивостi дискретного перетворення Лапласу
- 1.3.9 Основнi властивостi -перетворення
- Вiдповiдно теорiї зсуву
- Хай дискретне рiвняння має вигляд
- Розглянемо основну смугу та видiлимо у неї контур 1-2-3-4-5-1.
- Тема 1.4 Детерміновані сигнали та їх характеристики.
- 1.4.1 Неперервні сигнали.
- 1.4.2 Дискретні сигнали.
- 1.4.3 Випадкові сигнали та їх характеристики.
- Типова кореляційна функція
- 1.4.4 Лабораторна робота №3
- Іiнтегральна крива – рішення загального диференційного рівняння у вигляді деякої кривої у евклiдовому просторi
- Кореляційна функція вихідного сигналу - визначається як
- Кореляційна функція вихідного сигналу - визначається як
- Тема 2.1 Аналіз неперервних систем керування за допомогою диференційних рівнянь.
- 2.1.1 Диференційні рівняння та методи їх розв’язання.
- 2.1.2 Застосування перетворення Лапласа до розв’язання диференційних рівнянь
- 2.1.3 Принцип лінеаризації рівнянь.
- 1.Виконується декомпозиція системи керування
- 2. Складаються рівняння елементів сак
- 2.1.4 Вагова (імпульсна) перехідна функція неперервних систем керування
- 2.1.5 Перехідна функція неперервних систем керування.
- Оцінка якості перехідних процесів та задача аналітичного конструювання
- 2.1.7 Інтегральні показники якості перехідних процесів
- Тема 2.2 Передаточні функції неперервних систем керування.
- 2.2.1 Передаточні функції типових ланок
- 2.2.2 Структурні перетворення передаточних функції.
- 2.2.3 Передаточні функції неперервних систем автоматичного керування.
- 2.2.4 Передаточні функції нестаціонарних систем
- 2.2.5 Зв'язок передаточної функції з часовими характеристиками
- 2.2.5 Зв'язок з часовими характеристиками
- 2.2.6 Точність систем керування у сталих режимах.
- 2.2.7 Статичні похибки систем керування.
- 2.2.8 Швидкісна ( кінематична ) похибка.
- 2.2.9 Похибка системи керування у сталих режимах.
- 2.2.10 Похибка системи керування при дії гармонічних впливів.
- 2.2.11 Компенсація збуджуючих впливів
- 2.2.12 Комбінована система керування по задаючому впливу
- 2.2.13 Комбіноване керування по збуджуючому впливу.
- Тема 2.3 Поняття стійкості систем керування.
- 2.3.3 Достатні та необхідні умови стійкості неперервних систем керування
- 2.3.4 Теореми Ляпунова про стійкість лінійних систем керування
- 2.3.5 Алгебраїчні критерії стійкості.
- 2.3.6 Критерій Рауса.
- 2.3.7 Критерій Гурвіця.
- 2.3.8 Вплив параметрів системи керування на стійкість
- 2.3.9 Корневі методи оцінки якості перехідних процесів.
- 2.3.10 Визначення ступеня стійкості системи
- 2.3.11 Аналіз якості методом траєкторії коренів.
- 2.3.12 Вплив розташування нулів та полюсів передаточної функції на якість перехідних процесів.
- 2.4.1 Складання математично моделі нелінійної сау за функціональною схемою
- 2.4.2 Структурні перетворення нелінійних сау
- 2.4.4 Поняття змінних стану та фазового простору.
- 2.4.5 Опис систем керування на фазової площині.
- Тоді диференційне рівняння фазової траєкторії приймають вигляд
- 2.4.8 Перехідні процеси у нелінійних системах.
- 2.4.9 Метод точкових перетворень.
- 2.4.11 Метод Лур’є – Поснікова
- Тема 2.5 Математичні моделі систем керування за допомогою дискретних рівнянь
- 2.5.1 Дискретні рівняння систем керування та методи їх розв’язання.
- Дійсно, хай дискретне рівняння має вигляд
- Вільне рішення здобувається у вигляді (2.141)
- 2.5.2 Складання дискретних рівнянь лінійних систем
- 2.5.3 Вагова (імпульсна) перехідна функція дискретної системи.
- Тому що у цифрових елементах управління виконується запам'ятання значення імпульсу на весь період квантування, то , бо . Отже, передаточна функція в цьому випадку буде
- 2.5.6 Властивостi w(z)
- 2.5.7 Передаточка функція умовно розімкнутої дискретної системи
- Очевидно, що
- 2.5.8 Передаточнi функцiї замкнених дискретних систем
- 2.5.9 Умови стійкості дискретних систем керування.
- Тому що рiшення дискретного рiвняння вiдшукується у виглядi , де вiльна складова, яка є рiшенням однорiдного рівняння
- 2.5.12 Критерій Джурі.
- 2.5.13 Оцінка точностi роботи дискретних систем у сталих режимах
- 2.5.14 Дослiдження швидкодiї та коливальностi дискретних систем управлiння
- Тема 2.6 Частотні характеристики систем автоматичного керування
- 2.6.1 Комплексна функція передачі
- 2.6.2 Частотні характеристики систем керування з елементом чистої затримки
- Систему, яка вiдповiдає цьому рiвнянню можна зобразити у виглядi
- 2.6.3 Зв’язок часових характеристик систем керування з їх частотними характеристиками. Визначимо зв'язок часових та частотних характеристик системи. Відомо, що
- 2.6.5 Частотнi характеристики дискретних систем
- 2.6.6 Логарифмічні характеристики неперервних систем керування.
- 2.6.7 Логарифмічні характеристики дискретних систем керування.
- 2.6.9 Принцип аргументу.
- 2.6.10 Критерій Михайлова.
- 2.6.13 Визначення стійкості по логарифмічним характеристикам.
- 2.6.15 Визначення стійкості систем керування з елементом чистої затримки.
- 2.6.17 Визначення областi стiйкостi у площинi одного параметру.
- 2.6.20 Визначення стійкості параметрів автоколивань у нелінійних системах
- Запишемо характеристичне рiвняння замкненої системи у виглядi
- 2.6.26 Частотні методи дослідження якості
- 2.6.27 Показник коливальності систем керування
- 2.6.28 Зв’язок показників якості з частотними характеристиками
- 2.6.29 Оцінка якості перехідних процесів по логарифмічним характеристикам.
- Лабораторна робота №6
- Лабораторна робота №7
- Тема 2.7 Математичні моделі систем керування у просторі стану
- 2.7.1 Векторно-матричні моделі систем керування
- 2.7.2 Методи вибору змiнних стану
- 2.7.3 Метод простих дробів.
- 2.7.4 Метод простих спiвмножникiв.
- 2.7.5 Метод нормальних змiнних стану.
- 2.7.6 Метод аналогового моделювання.
- 2.7.7 Метод структурного моделювання.
- 2.7.8 Нормальна форма рівняння.
- 2.7.9 Визначення перехідних процесів по векторно-матричним моделям.
- 2.7.9 Обчислення часових характеристик по векторно-матричним моделям.
- При цьому
- 2.7.10 Визначення передаточної функції по вмм.
- 2.7.11 Визначення частотних характеристик з використанням векторно-матричної моделі системи
- А розв’язок має вигляд (2.271)
- 2.7.12 Векторно-матричні моделі дискретних систем керування.
- Якщо покласти , , то
- 2.7.13 Методи вибору змiнних стану для дискретних систем керування.
- 2.7.14 Метод розкладу на елементарнi дробi.
- 2.7.15 Метод нормальних змiнних стану. Нехай система описується дискретним рiвнянням
- 2.7.16 Складання вмм дискретної системи
- 2.7.17 Обчислення матричної експоненти exp(at) Тому що то суттєву роль у визначенні змiнних стану грає вираз який називають матрицею переходу або матричною експонентою.
- Тодi рiшення рiвнянь стану записується у виглядi
- Так, якщо задано цифрову систему керування , а матриця визначена як
- Тому що
- 2.7.18 Визначення передаточної функції дискретної системи
- 2.7.19 Застосування вмм до аналізу нелінійних систем
- 2.7.20 Цифрове моделювання неперервних систем керування.
- При цьому
- 2.7.21 Визначення стійкості по векторно-матричним моделям.
- Тому що рiшення цього рiвняння добувається у виглядi
- Лабораторна робота №8
- Тема 2.8 Задача визначення мінімуму середньоквадратичної похибки
- 2.8.1 Лінійні перетворення випадкових сигналів.
- 2.8.3 Нелінійні перетворення випадкових сигналів
- 2.8.4 Статистична лінеаризація нелiнiйної ланки
- 2.8.5 Похибка системи керування при випадкових впливах.
- 2.8.6 Мінімізація похибки при заданої структури системи керування
- 2.8.7 Визначення дисперсії відхилення при випадкових впливах.
- 2.8.8 Критерії мінімуму середньоквадратичної похибки.
- 2.8.9 Визначення впливу змiни параметрiв системи на скв
- 2.8.10 Лабораторна робота №8 Дослідження впливу параметрів системи керування на мінімум середньо- квадратичні похибки.
- Демпфірування з подавленням середніх частот -- процес зміщення вниз середньо частотної частини логарифмічної амплітудної частотної характеристики
- Тема 3.1 Методи підвищення якості систем керування
- 3.1.1 Чутливість системи керування до зміни параметрів
- 3.1.2 Зміна параметрів систем керування за допомогою зворотних зв’язків.
- 3.1.3 Використання жорстких зворотних зв’язків
- 3.1.4 Використання гнучких зворотних зв’язків.
- 3.1.5 Використання неодиничних головних зворотних зв’язків.
- 3.1.6 Ковзні процеси у нелінійних системах керування.
- 3.1.7 Дослідження коливальних перехідних процесів у нелінійних системах керування.
- 3.1.8 Проходження повільно змінюючихся сигналів у автоколивальних нелінійних системах.
- 3.1.9 Вібраційна лінеаризація нелінійностей.
- Тема 3 2 Типові лінійні закони керування.
- 3.2.1 Типові лінійні закони керування
- 3.2.2 Класифікація автоматичних регуляторів
- 3.2.3 Пропорційне керування
- 3.2.4 Інтегральні регулятори
- 3.2.5 Пропорційно-інтегральне керування.
- 3.2.6 Диференційні керуючі пристрої
- 3.2.7 Пропорційно інтегрально диференційні регулятори
- 3.2.8 Стандартні настройки контурів керування
- 3.2.9 Цифровий під-регулятор.
- 3.2.10 Лабораторна робота №7 Дослідження цифрового під регулятора.
- 3.2.11 Цифрові системи керування з кінцевим часом перехідного процесу
- Тема 3.3 Синтез неперервних систем автоматичного керування.
- 3.3.1 Методи синтезу неперервних систем керування .
- 3.3.2 Побудова бажаної логарифмічної характеристики.
- 3.3.3 Синтез послідовного корегуючого пристрою.
- 3.3.3 Синтез корегуючого пристрою зворотнього зв’язку.
- 3.3.5 Корегуючі ланки та їх характеристики
- 3.3.6 Корекція нелінійних систем керування. Лінійна корекція нелінійних систем
- 3.3.7 Нелінійні корегуючі пристрої
- Тема 3.4 Методи синтезу дискретних систем керування.
- 3.4.1 Послідовна корекція за допомогою аналогових пристроїв
- Отже, .
- 3.4.2 Прямий синтез цифрових систем у області w-перетворень .
- 3.4.3 Корекція дискретних систем за допомогою регуляторів у колі зворотнього зв’язку.
- Для умови z-перетворення записується у вигляді
- 3.4.4 Синтез цифрових регуляторів.
- Отже, якщо
- 3.4.5 Реалізація цифрових регуляторів на цом.
- 3.4.6 Безпосереднє ( пряме ) програмування цр.
- 3.4.7 Послідовне програмування цр.
- 3.4.8 Паралельне програмування цр.
- 3.4.9 Синтез дискретних систем керування методом логарифмічних характеристик.
- Тема 3.5 Синтез лінійних стаціонарних операторів при випадкових збудженнях.
- 3.5.1 Синтез лінійних стаціонарних операторів
- 3.5.2 Синтез при довільної структурі системи
- 3.5.3 Лабораторна робота №11
- Тема 3.6 Керованість та спостережливість динамічних
- 3.6.1 Поняття керованості та спостережливості
- 3.6.2 Визначення умов досягаємості
- 3.6.3 Визначення умов керованості.
- 3.6.4 Визначення умов спостережливості
- 3.6.5 Визначення умов відновлюваності
- 3.6.6 Канонічні перетворення
- 3.6.7 Канонічна форма керованості
- 3.6.8 Канонічна форма відновлюваності
- 3.6.9 Канонічна форма спостережливості
- 3.6.8 Керованість замкнутох системи із зворотним зв’язком по стану
- 3.6.9 Дуальний зв’язок між канонічними формами
- 3.6.10 Оцінка вектору стану ( Спостерігаючи пристрої )
- 3.6.11 Спостерігач повного порядку
- 3.6.12 Синтез систем керування по заданому розташуванню полюсів за допомогою зворотного зв’язку по стану .
- 3.6.13 Синтез модальних регуляторів
- 3.6.14 Синтез цифрових систем керування із зворотнім зв`язком по стану
- 3.6.15 Застосування цифрового регулятора
- 3.6.16 Лабораторна робота №12
- Тема 3.7 Поняття про оптимальне та адаптивне керування
- Поняття про оптимальне та адаптивне керування
- 3.7.2 Критерії оптимальності
- 3.7.3 Класифікація задач оптимального керування
- 3.7.6 Метод класичного варіаційного числення.
- Принцип максимуму Понтрягіна
- 3.7.8 Принцип максимуму для задачі із вільним кінцем траєкторії та із заданим часом керування.
- 3.7.9 Принцип максимуму для задач з незаданим часом керування.
- 3.7.10 Принцип максимуму в задачах оптимальної швидкодії з закріпленим кінцем траєкторії.
- 3.7.11 Теорема про інтервалах.
- 3.7.12 Застосування метода фазової площини для розв’язання задач оптимального за швидкодією керування.
- 3.7.13 Метод динамічного програмування. Принцип оптимальності Беллмана.
- 3.7.14 Дискретний варіант динамічного програмування.
- 3.7.15 Неперервний варіант динамічного програмування.
- 3.7.16 Системи екстремального керування
- 3.7.17 Методи визначення градієнта функції декількох змінних
- 3.7.18 Типи систем екстремального керування
- 3.7.19 Поняття про ідентифікацію
- 3.7.20 Адаптивні системи керування
- 3.7.21 Лабораторна робота №13
- Література
- Пункт Редагування
- Пункт Вікно
- Папки елементів
- Елементи керування