1.2.16 Дискретні системи автоматичного керування.
Дискретними називаються системи, в яких перетворення сигналів у деяких точках здійснюються тільки у дискретні моменти часу , де – період дискретності.
Дискретна послідовність виникає в результаті квантування неперервних сигналів у дискретні моменти часу, яке здійснюється у квантувателях (імпульсних елементах, пристроях вибірки-зберігання), реалізованих за тим чи іншим принципом квантування.
Цифрове керування являє собою більш сучасну форму керування, ніж звичайна. Функції керування за допомогою ЦОМ значно складніші та різноманітніші.
Швидкість дії цифрових систем керування процесами прискорює обчислення та обробку інформації, дозволяє здійснювати оптимальне керування процесом у цілому, сприяє накопиченню даних, забезпечує можливість використовувати реєстрацію та проводити обробку даних, здійснювати діагнозування процесу та приймання рішень.
Розглянемо основні функції керування процесами:
1. Обробки даних та спостереження за ними.
2. Безпосереднє та програмне керування.
3. Оптимальне та адаптивне керування.
Суть обробки даних та спостереження за ними у ході процесу керування можна пояснити схемою (Рис. 1.61 ). Система збору даних готує у цифровій формі дані вимірювання для ЕОМ, яка видає оператору свідчення про ключові змінні процесу та заповнює робочий формуляр зміни поточними даними, звільнює оператора від рутинних операцій. Автоматичні регулюючі пристрої виконують роль органів керування у допоміжних ланках, а головним контуром керування є оператор, що використовує ЕОМ, котра видає йому рекомендації для керування процесами.
Рис. 1.61 Система збору та обробки даних
Рис. 1.62 Принципи оптимального ккерування
Рис. 1.63 Адаптивне керування
Оптимальне керування використовується з метою досягнення найкращих у певному розумінні показників процесу керування на підставі визначення оптимальних управлінь, які надають екстремальних значень цільовим функціям за умови діючих обмежень. При цьому ЦОМ керування процесом шукає розв'язок рішення оптимального керування та видає значення змінних процесу, які потрібні для оптимізації цільової функції (Рис.1.62 ). Оптимальне керування можна використовувати із зворотними зв'язками або без них.
У деяких випадках, якщо необхідно постійно слідкувати за параметрами процесу та пристосовуватись до їх зміни, уточнювати характеристики процесу, використовується адаптивне керування (Рис.1.63 ).
При безпосередньому керуванні (Рис.1.64) автоматичні регулюючі пристрої використовуються в одному контурі з ЕОМ, яка розподіляє їх роботу роздільно у часі. Програмне керування - це вироблення системою керування процесів певної послідовності процедур та керуючих дій, при якому керування здійснюється за допомогою автоматичних регуляторів шляхом подачі сигналів сталих значень на контрольовані точки або забезпечувати ввід керуючих впливів за допомогою подачі команд для пуску та зупинки окремих процесів.
Рис.1.64 Система безпосереднього цифрового керування
Таким чином, дискретними називаються системи автоматичного керування, у контурах керування яких здійснюються дискретні перетворення сигналів у вигляді послідовності імпульсів або цифрових кодів.
У технічній літературі по керуванню часто-густо зустрічаються терміни "імпульсні системи”,” дискретні системи”,” цифрові системи”, які трактуються досить довільно. Тому у подальшому слід визначити ,який термін треба використовувати до тієї чи іншої системи. Отже, термін "імпульсні системи" слід використовувати у тих випадках, коли у системі є квантуючи пристрої з амплітудною, фазовою або широтно-імпульсною модуляцією, при яких інформаційним показником виступають деякі фізичні властивості імпульсів.
Термін "цифрові системи використовується до систем, у яких сигнали генеруються цифровими пристроями у вигляді цифрових кодів з подальшим їх перетворенням у неперервний вплив для зміни стану змінних процесу.
Термін "дискретні системи” застосовується для опису всіх систем, в яких спостерігається перетворення сигналів у дискретні моменти часу незалежно від прийнятого у системі закону модулювання сигналів. Тому він характеризує системи у більш загальному використанню.
Розглянемо типову імпульсну систему керування із зворотним зв’язком, яка має квантуючий пристрій у прямому ланцюгу передачі сигналу (Рис.1.65 )
Рис. 1.65 Імпульсну систему керування
Неперервний сигнал похибки квантується у часі, при цьому вихідний сигнал квантування (квантуючого пристрою) представляє собою послідовність імпульсів з деякими фізичними властивостями. Фільтр, який розміщений між квантувателем та керованим процесом, забезпечує згладжування, тому що більшість фізичних процесів використовують неперервний (аналоговий) сигнал.
Рис. 1.67 Принципи імпульсного квантування
У залежності від засобу квантування розділяють квантуючі пристрої з амплітудно-імпульсною модуляцією (Рис.1.66 а), з широтно-імпульсною модуляцією (Рис.1.66 б) та фазо-імпульсною модуляцією ( Рис.1.66 в) для яких період T0 послідовності імпульсів є сталим, а інформаційними показниками сигналу виступають, відповідно, амплітуда, тривалість, фаза імпульсів, та з частотно-імпульсною модуляцією (Рис. 1.67 г) при якому інформаційним параметром сигналу є частота f виникнення імпульсів.
Типова імпульсна система керування з амплітудною імпульсною модуляцією (Рис.1.68)
Рис. 1.68 Типова імпульсна система керування швидкістю обертання валу
навантаження з ДПС
У цифрових системах керування (Рис.1.69) сигнали у деяких точках системи перетворюються у цифровий код, яким подалі оперує цифрова машина. При цьому квантування сигналу здійснюється аналого-цифровим перетворювачем АЦП та цифро-аналоговим перетворювачем ЦАП. При цьому, якщо ЦОМ виконує тільки пропорційне перетворювання сигналу, то пристрої АЦП-ЦОМ-ЦАП можна визначити як деякий квантуючий пристрій, який виконує модуляцію сигналу за амплітудою та рівнем, при сталій частоті послідовності імпульсів. Процес перетворення сигналу у АЦП можна представити як модуляцію послідовності -імпульсів неперервним сигналом з подальшим перетворенням у цифрову форму , яка залежить від числа N діючих розрядів перетворювання (Рис.1.70)
Рис. 1.69 Цифрова система керування
Рис. 1.70 До принципу квантування по рівню та часу
На виході ЦОМ після обробки сигналу теж з'являється кодований сигнал, який перетворюється у ЦАП у аналогову форму , значення якого змінюється тільки у дискретні моменти та є стійким між цими моментами (Рис. 1.71 )
Рис.1.71 Основний цифровий канал керування
Отже, простішу дискретну систему можна зобразити як сполуку ідеального квантуючого пристрою, формувальника та неперервної частини ( Рис.1.72).
Рис. 1.72 Ідеальний квантуючий пристрій в системі керування
Ідеальний квантуючий пристрій (імпульсний елемент ІЕ) здійснює модуляцію дельта-послідовності неперервним сигналом
( 1.38 )
Отже, на виході ІЕ з'являється послідовність дельта-імпульсів, які нормовані значенням неперервної величини, яке вона має у момент дії імпульсу. Ця послідовність поступає на вхід формувальника, який у залежності від прийнятого принципу дії формує фізичний імпульсний сигнал , який діє на неперервну частину системи . Таким чином, роботу дискретної системи можна розглядати таким чином: замикання системи виконується тільки для дискретного моменту ІЕ , в моменти тобто між дією імпульсів система працює як розімкнена.
Треба визначити, що у випадках, коли частота переривання сигналу значно більше максимальної частоти амплітудно-частотних характеристик неперервної частини системи, то дискретні системи можна розглядати як неперервні та виконувати її дослідження методами теорії неперервних систем.
Тому що замикання дискретної системи виконується тільки у дискретні моменти часу, тобто у моменти знімання даних аналогового сигналу, тому і методи опису дискретних систем основуються на дослідженні сигналів тільки у дискретні моменти, які визначають замкнений стан системи.
Отже, у моменти дії на неперервну частину системи імпульсів визначної фізичної форми , динаміка системи описується рівнянням
, ( 1.39 )
а у періоди між ними – однорідним диференційним рівнянням , ( 1.40 )
Отже, якщо початкові умови визначені, то на основі методу припасовування рішень та можна визначити загальне рівняння, яке описує динамічні процеси у дискретних системах.
- Тема 1.1. Загальні поняття та визначення …………………………………………………………… 19
- Тема 1.2. Класифікація систем автоматичного керування ………………………………………35
- Тема 1.3 Системний підхід до складання математичної моделі систем керування……. 66
- Тема 1.4 Детерміновані сигнали та їх характеристики …………………………………… 89
- Тема 2.1 Математичні моделі систем керування у вигляді диференційних рівнянь…….121
- Тема 2.2 Передаточної функції неперервних систем керування…………………………..144
- Тема 2.3 Стійкість процесів в неперервних системах керування………………………….. 164
- Тема 2.4 Математичні моделі систем керування у фазовому просторі………………… 181
- Тема 2.5 Математичні моделі систем керування за допомогою дискретних систем…… 220
- Тема 2.6 Частотні характеристики систем автоматичного керування………………… 261
- Тема 2.8 Задача визначення мінімуму середньо-квадратичної похибки…………………384
- Тема 3.1 Методи підвищення якості систем керування……………………………………418
- Тема 3.2 Типові лінійні закони керування………………………………………………….440
- Тема 3.3 Синтез неперервних систем керування……………………………………………469
- Тема 3.4 Методи синтезу дискретних систем керування ………………………………… 489
- Тема 3.5 Синтез систем керування при дії випадкових збуреннях…………………………..511
- Тема 3.6 Керованість та спостережливість систем керування…………………………….522
- Тема 3.7 Поняття про оптимальне та адаптивне керування…………………………………554
- Тема 1.1 Загальні поняття та визначення.
- Основні поняття теорії автоматичного керування.
- 1.1.2 Основні задачі теорії автоматичного керування.
- Основні поняття теорії автоматичного керування.
- 1.1.5 Підсистема керування (пристрій завдання, регулюючий пристрій, виконавчий пристрій, вимірювальні пристрої). Поняття типової ланки системи керування.
- 1.1.6 Система автоматичного керування та її основна задача
- Тема 1.2 Класифікація систем автоматичного керування.
- 1.2.1 Класифікація систем керування за принципом організації (за принципом дії).
- 1.2.2 Принцип розімкненого керування.
- 1.2.3 Лабораторна робота №1
- 1.2.4 Принцип замкненого керування.
- 1.2.5 Лабораторна робота №2
- 1.2.6 Класифікація систем автоматичного керування за ціллю керування.
- 1.2.7 Класифікація систем автоматичного керування за математичним описом оператора системи.
- 1.2.8 Лінійні системи автоматичного керування.
- 1.2.9 Нелінійні системи автоматичного керування.
- 1.2.10 Класифікація нелінійностей
- Наприклад: інерційна нелінійна ланка
- 1.2.11 Класифікація систем автоматичного керування за характером похибки у сталому режиму.
- 1.2.12 Класифікація за характером зміни оператора системи у часі.
- 1.2.13 Класифікація систем керування за кількістю каналів керування.
- 1.2.14 Класифікація систем керування за характером перетворення сигналів у часі.
- 1.2.15 Неперервні системи автоматичного керування.
- 1.2.16 Дискретні системи автоматичного керування.
- 1.2.17 Функції цифрового керування
- 1.2.18 Безпосереднє цифрове керування
- 1.2.19. Коректування впливу похибки перетворення аналогового сигналу у дискретний.
- Тема 1.3 Системний підхід до складання математичних моделі систем керування.
- 1.3.1 Перетворення Лапласа
- 1.3.2 Властивості перетворення Лапласа.
- 1.3.4 Перетворення Фур’є .
- 1.3.5 Властивості перетворення Фур’є
- 1.3.6 Дискретне перетворення Лапласа.
- Для вiдносного часу використовується символьна форма зображення
- 1.3.7 Основнi властивостi дискретного перетворення Лапласу
- 1.3.9 Основнi властивостi -перетворення
- Вiдповiдно теорiї зсуву
- Хай дискретне рiвняння має вигляд
- Розглянемо основну смугу та видiлимо у неї контур 1-2-3-4-5-1.
- Тема 1.4 Детерміновані сигнали та їх характеристики.
- 1.4.1 Неперервні сигнали.
- 1.4.2 Дискретні сигнали.
- 1.4.3 Випадкові сигнали та їх характеристики.
- Типова кореляційна функція
- 1.4.4 Лабораторна робота №3
- Іiнтегральна крива – рішення загального диференційного рівняння у вигляді деякої кривої у евклiдовому просторi
- Кореляційна функція вихідного сигналу - визначається як
- Кореляційна функція вихідного сигналу - визначається як
- Тема 2.1 Аналіз неперервних систем керування за допомогою диференційних рівнянь.
- 2.1.1 Диференційні рівняння та методи їх розв’язання.
- 2.1.2 Застосування перетворення Лапласа до розв’язання диференційних рівнянь
- 2.1.3 Принцип лінеаризації рівнянь.
- 1.Виконується декомпозиція системи керування
- 2. Складаються рівняння елементів сак
- 2.1.4 Вагова (імпульсна) перехідна функція неперервних систем керування
- 2.1.5 Перехідна функція неперервних систем керування.
- Оцінка якості перехідних процесів та задача аналітичного конструювання
- 2.1.7 Інтегральні показники якості перехідних процесів
- Тема 2.2 Передаточні функції неперервних систем керування.
- 2.2.1 Передаточні функції типових ланок
- 2.2.2 Структурні перетворення передаточних функції.
- 2.2.3 Передаточні функції неперервних систем автоматичного керування.
- 2.2.4 Передаточні функції нестаціонарних систем
- 2.2.5 Зв'язок передаточної функції з часовими характеристиками
- 2.2.5 Зв'язок з часовими характеристиками
- 2.2.6 Точність систем керування у сталих режимах.
- 2.2.7 Статичні похибки систем керування.
- 2.2.8 Швидкісна ( кінематична ) похибка.
- 2.2.9 Похибка системи керування у сталих режимах.
- 2.2.10 Похибка системи керування при дії гармонічних впливів.
- 2.2.11 Компенсація збуджуючих впливів
- 2.2.12 Комбінована система керування по задаючому впливу
- 2.2.13 Комбіноване керування по збуджуючому впливу.
- Тема 2.3 Поняття стійкості систем керування.
- 2.3.3 Достатні та необхідні умови стійкості неперервних систем керування
- 2.3.4 Теореми Ляпунова про стійкість лінійних систем керування
- 2.3.5 Алгебраїчні критерії стійкості.
- 2.3.6 Критерій Рауса.
- 2.3.7 Критерій Гурвіця.
- 2.3.8 Вплив параметрів системи керування на стійкість
- 2.3.9 Корневі методи оцінки якості перехідних процесів.
- 2.3.10 Визначення ступеня стійкості системи
- 2.3.11 Аналіз якості методом траєкторії коренів.
- 2.3.12 Вплив розташування нулів та полюсів передаточної функції на якість перехідних процесів.
- 2.4.1 Складання математично моделі нелінійної сау за функціональною схемою
- 2.4.2 Структурні перетворення нелінійних сау
- 2.4.4 Поняття змінних стану та фазового простору.
- 2.4.5 Опис систем керування на фазової площині.
- Тоді диференційне рівняння фазової траєкторії приймають вигляд
- 2.4.8 Перехідні процеси у нелінійних системах.
- 2.4.9 Метод точкових перетворень.
- 2.4.11 Метод Лур’є – Поснікова
- Тема 2.5 Математичні моделі систем керування за допомогою дискретних рівнянь
- 2.5.1 Дискретні рівняння систем керування та методи їх розв’язання.
- Дійсно, хай дискретне рівняння має вигляд
- Вільне рішення здобувається у вигляді (2.141)
- 2.5.2 Складання дискретних рівнянь лінійних систем
- 2.5.3 Вагова (імпульсна) перехідна функція дискретної системи.
- Тому що у цифрових елементах управління виконується запам'ятання значення імпульсу на весь період квантування, то , бо . Отже, передаточна функція в цьому випадку буде
- 2.5.6 Властивостi w(z)
- 2.5.7 Передаточка функція умовно розімкнутої дискретної системи
- Очевидно, що
- 2.5.8 Передаточнi функцiї замкнених дискретних систем
- 2.5.9 Умови стійкості дискретних систем керування.
- Тому що рiшення дискретного рiвняння вiдшукується у виглядi , де вiльна складова, яка є рiшенням однорiдного рівняння
- 2.5.12 Критерій Джурі.
- 2.5.13 Оцінка точностi роботи дискретних систем у сталих режимах
- 2.5.14 Дослiдження швидкодiї та коливальностi дискретних систем управлiння
- Тема 2.6 Частотні характеристики систем автоматичного керування
- 2.6.1 Комплексна функція передачі
- 2.6.2 Частотні характеристики систем керування з елементом чистої затримки
- Систему, яка вiдповiдає цьому рiвнянню можна зобразити у виглядi
- 2.6.3 Зв’язок часових характеристик систем керування з їх частотними характеристиками. Визначимо зв'язок часових та частотних характеристик системи. Відомо, що
- 2.6.5 Частотнi характеристики дискретних систем
- 2.6.6 Логарифмічні характеристики неперервних систем керування.
- 2.6.7 Логарифмічні характеристики дискретних систем керування.
- 2.6.9 Принцип аргументу.
- 2.6.10 Критерій Михайлова.
- 2.6.13 Визначення стійкості по логарифмічним характеристикам.
- 2.6.15 Визначення стійкості систем керування з елементом чистої затримки.
- 2.6.17 Визначення областi стiйкостi у площинi одного параметру.
- 2.6.20 Визначення стійкості параметрів автоколивань у нелінійних системах
- Запишемо характеристичне рiвняння замкненої системи у виглядi
- 2.6.26 Частотні методи дослідження якості
- 2.6.27 Показник коливальності систем керування
- 2.6.28 Зв’язок показників якості з частотними характеристиками
- 2.6.29 Оцінка якості перехідних процесів по логарифмічним характеристикам.
- Лабораторна робота №6
- Лабораторна робота №7
- Тема 2.7 Математичні моделі систем керування у просторі стану
- 2.7.1 Векторно-матричні моделі систем керування
- 2.7.2 Методи вибору змiнних стану
- 2.7.3 Метод простих дробів.
- 2.7.4 Метод простих спiвмножникiв.
- 2.7.5 Метод нормальних змiнних стану.
- 2.7.6 Метод аналогового моделювання.
- 2.7.7 Метод структурного моделювання.
- 2.7.8 Нормальна форма рівняння.
- 2.7.9 Визначення перехідних процесів по векторно-матричним моделям.
- 2.7.9 Обчислення часових характеристик по векторно-матричним моделям.
- При цьому
- 2.7.10 Визначення передаточної функції по вмм.
- 2.7.11 Визначення частотних характеристик з використанням векторно-матричної моделі системи
- А розв’язок має вигляд (2.271)
- 2.7.12 Векторно-матричні моделі дискретних систем керування.
- Якщо покласти , , то
- 2.7.13 Методи вибору змiнних стану для дискретних систем керування.
- 2.7.14 Метод розкладу на елементарнi дробi.
- 2.7.15 Метод нормальних змiнних стану. Нехай система описується дискретним рiвнянням
- 2.7.16 Складання вмм дискретної системи
- 2.7.17 Обчислення матричної експоненти exp(at) Тому що то суттєву роль у визначенні змiнних стану грає вираз який називають матрицею переходу або матричною експонентою.
- Тодi рiшення рiвнянь стану записується у виглядi
- Так, якщо задано цифрову систему керування , а матриця визначена як
- Тому що
- 2.7.18 Визначення передаточної функції дискретної системи
- 2.7.19 Застосування вмм до аналізу нелінійних систем
- 2.7.20 Цифрове моделювання неперервних систем керування.
- При цьому
- 2.7.21 Визначення стійкості по векторно-матричним моделям.
- Тому що рiшення цього рiвняння добувається у виглядi
- Лабораторна робота №8
- Тема 2.8 Задача визначення мінімуму середньоквадратичної похибки
- 2.8.1 Лінійні перетворення випадкових сигналів.
- 2.8.3 Нелінійні перетворення випадкових сигналів
- 2.8.4 Статистична лінеаризація нелiнiйної ланки
- 2.8.5 Похибка системи керування при випадкових впливах.
- 2.8.6 Мінімізація похибки при заданої структури системи керування
- 2.8.7 Визначення дисперсії відхилення при випадкових впливах.
- 2.8.8 Критерії мінімуму середньоквадратичної похибки.
- 2.8.9 Визначення впливу змiни параметрiв системи на скв
- 2.8.10 Лабораторна робота №8 Дослідження впливу параметрів системи керування на мінімум середньо- квадратичні похибки.
- Демпфірування з подавленням середніх частот -- процес зміщення вниз середньо частотної частини логарифмічної амплітудної частотної характеристики
- Тема 3.1 Методи підвищення якості систем керування
- 3.1.1 Чутливість системи керування до зміни параметрів
- 3.1.2 Зміна параметрів систем керування за допомогою зворотних зв’язків.
- 3.1.3 Використання жорстких зворотних зв’язків
- 3.1.4 Використання гнучких зворотних зв’язків.
- 3.1.5 Використання неодиничних головних зворотних зв’язків.
- 3.1.6 Ковзні процеси у нелінійних системах керування.
- 3.1.7 Дослідження коливальних перехідних процесів у нелінійних системах керування.
- 3.1.8 Проходження повільно змінюючихся сигналів у автоколивальних нелінійних системах.
- 3.1.9 Вібраційна лінеаризація нелінійностей.
- Тема 3 2 Типові лінійні закони керування.
- 3.2.1 Типові лінійні закони керування
- 3.2.2 Класифікація автоматичних регуляторів
- 3.2.3 Пропорційне керування
- 3.2.4 Інтегральні регулятори
- 3.2.5 Пропорційно-інтегральне керування.
- 3.2.6 Диференційні керуючі пристрої
- 3.2.7 Пропорційно інтегрально диференційні регулятори
- 3.2.8 Стандартні настройки контурів керування
- 3.2.9 Цифровий під-регулятор.
- 3.2.10 Лабораторна робота №7 Дослідження цифрового під регулятора.
- 3.2.11 Цифрові системи керування з кінцевим часом перехідного процесу
- Тема 3.3 Синтез неперервних систем автоматичного керування.
- 3.3.1 Методи синтезу неперервних систем керування .
- 3.3.2 Побудова бажаної логарифмічної характеристики.
- 3.3.3 Синтез послідовного корегуючого пристрою.
- 3.3.3 Синтез корегуючого пристрою зворотнього зв’язку.
- 3.3.5 Корегуючі ланки та їх характеристики
- 3.3.6 Корекція нелінійних систем керування. Лінійна корекція нелінійних систем
- 3.3.7 Нелінійні корегуючі пристрої
- Тема 3.4 Методи синтезу дискретних систем керування.
- 3.4.1 Послідовна корекція за допомогою аналогових пристроїв
- Отже, .
- 3.4.2 Прямий синтез цифрових систем у області w-перетворень .
- 3.4.3 Корекція дискретних систем за допомогою регуляторів у колі зворотнього зв’язку.
- Для умови z-перетворення записується у вигляді
- 3.4.4 Синтез цифрових регуляторів.
- Отже, якщо
- 3.4.5 Реалізація цифрових регуляторів на цом.
- 3.4.6 Безпосереднє ( пряме ) програмування цр.
- 3.4.7 Послідовне програмування цр.
- 3.4.8 Паралельне програмування цр.
- 3.4.9 Синтез дискретних систем керування методом логарифмічних характеристик.
- Тема 3.5 Синтез лінійних стаціонарних операторів при випадкових збудженнях.
- 3.5.1 Синтез лінійних стаціонарних операторів
- 3.5.2 Синтез при довільної структурі системи
- 3.5.3 Лабораторна робота №11
- Тема 3.6 Керованість та спостережливість динамічних
- 3.6.1 Поняття керованості та спостережливості
- 3.6.2 Визначення умов досягаємості
- 3.6.3 Визначення умов керованості.
- 3.6.4 Визначення умов спостережливості
- 3.6.5 Визначення умов відновлюваності
- 3.6.6 Канонічні перетворення
- 3.6.7 Канонічна форма керованості
- 3.6.8 Канонічна форма відновлюваності
- 3.6.9 Канонічна форма спостережливості
- 3.6.8 Керованість замкнутох системи із зворотним зв’язком по стану
- 3.6.9 Дуальний зв’язок між канонічними формами
- 3.6.10 Оцінка вектору стану ( Спостерігаючи пристрої )
- 3.6.11 Спостерігач повного порядку
- 3.6.12 Синтез систем керування по заданому розташуванню полюсів за допомогою зворотного зв’язку по стану .
- 3.6.13 Синтез модальних регуляторів
- 3.6.14 Синтез цифрових систем керування із зворотнім зв`язком по стану
- 3.6.15 Застосування цифрового регулятора
- 3.6.16 Лабораторна робота №12
- Тема 3.7 Поняття про оптимальне та адаптивне керування
- Поняття про оптимальне та адаптивне керування
- 3.7.2 Критерії оптимальності
- 3.7.3 Класифікація задач оптимального керування
- 3.7.6 Метод класичного варіаційного числення.
- Принцип максимуму Понтрягіна
- 3.7.8 Принцип максимуму для задачі із вільним кінцем траєкторії та із заданим часом керування.
- 3.7.9 Принцип максимуму для задач з незаданим часом керування.
- 3.7.10 Принцип максимуму в задачах оптимальної швидкодії з закріпленим кінцем траєкторії.
- 3.7.11 Теорема про інтервалах.
- 3.7.12 Застосування метода фазової площини для розв’язання задач оптимального за швидкодією керування.
- 3.7.13 Метод динамічного програмування. Принцип оптимальності Беллмана.
- 3.7.14 Дискретний варіант динамічного програмування.
- 3.7.15 Неперервний варіант динамічного програмування.
- 3.7.16 Системи екстремального керування
- 3.7.17 Методи визначення градієнта функції декількох змінних
- 3.7.18 Типи систем екстремального керування
- 3.7.19 Поняття про ідентифікацію
- 3.7.20 Адаптивні системи керування
- 3.7.21 Лабораторна робота №13
- Література
- Пункт Редагування
- Пункт Вікно
- Папки елементів
- Елементи керування